#pragma once #include #include #include #include #include #include #include "config.h" class SipHash; class Collator; namespace llvm { class LLVMContext; class Value; class IRBuilderBase; } namespace DB { namespace ErrorCodes { extern const int CANNOT_GET_SIZE_OF_FIELD; extern const int NOT_IMPLEMENTED; extern const int BAD_COLLATION; } class Arena; class ColumnGathererStream; class Field; class WeakHash32; class ColumnConst; /// A range of column values between row indexes `from` and `to`. The name "equal range" is due to table sorting as its main use case: With /// a PRIMARY KEY (c_pk1, c_pk2, ...), the first PK column is fully sorted. The second PK column is sorted within equal-value runs of the /// first PK column, and so on. The number of runs (ranges) per column increases from one primary key column to the next. An "equal range" /// is a run in a previous column, within the values of the current column can be sorted. struct EqualRange { size_t from; /// inclusive size_t to; /// exclusive EqualRange(size_t from_, size_t to_) : from(from_), to(to_) { chassert(from <= to); } size_t size() const { return to - from; } }; using EqualRanges = std::vector; /// A checkpoint that contains size of column and all its subcolumns. /// It can be used to rollback column to the previous state, for example /// after failed parsing when column may be in inconsistent state. struct ColumnCheckpoint { size_t size; explicit ColumnCheckpoint(size_t size_) : size(size_) {} virtual ~ColumnCheckpoint() = default; }; using ColumnCheckpointPtr = std::shared_ptr; using ColumnCheckpoints = std::vector; struct ColumnCheckpointWithNested : public ColumnCheckpoint { ColumnCheckpointWithNested(size_t size_, ColumnCheckpointPtr nested_) : ColumnCheckpoint(size_), nested(std::move(nested_)) { } ColumnCheckpointPtr nested; }; struct ColumnCheckpointWithMultipleNested : public ColumnCheckpoint { ColumnCheckpointWithMultipleNested(size_t size_, ColumnCheckpoints nested_) : ColumnCheckpoint(size_), nested(std::move(nested_)) { } ColumnCheckpoints nested; }; /// Declares interface to store columns in memory. class IColumn : public COW { private: friend class COW; /// Creates the same column with the same data. /// This is internal method to use from COW. /// It performs shallow copy with copy-ctor and not useful from outside. /// If you want to copy column for modification, look at 'mutate' method. [[nodiscard]] virtual MutablePtr clone() const = 0; public: /// Name of a Column. It is used in info messages. [[nodiscard]] virtual std::string getName() const { return getFamilyName(); } /// Name of a Column kind, without parameters (example: FixedString, Array). [[nodiscard]] virtual const char * getFamilyName() const = 0; /// Type of data that column contains. It's an underlying type: UInt16 for Date, UInt32 for DateTime, so on. [[nodiscard]] virtual TypeIndex getDataType() const = 0; /** If column isn't constant, returns itself. * If column is constant, transforms constant to full column (if column type allows such transform) and return it. */ [[nodiscard]] virtual Ptr convertToFullColumnIfConst() const { return getPtr(); } /// If column isn't ColumnLowCardinality, return itself. /// If column is ColumnLowCardinality, transforms it to full column. [[nodiscard]] virtual Ptr convertToFullColumnIfLowCardinality() const { return getPtr(); } /// If column isn't ColumnSparse, return itself. /// If column is ColumnSparse, transforms it to full column. [[nodiscard]] virtual Ptr convertToFullColumnIfSparse() const { return getPtr(); } [[nodiscard]] Ptr convertToFullIfNeeded() const { return convertToFullColumnIfSparse()->convertToFullColumnIfConst()->convertToFullColumnIfLowCardinality(); } /// Creates empty column with the same type. [[nodiscard]] virtual MutablePtr cloneEmpty() const { return cloneResized(0); } /// Creates column with the same type and specified size. /// If size is less than current size, then data is cut. /// If size is greater, then default values are appended. [[nodiscard]] virtual MutablePtr cloneResized(size_t /*size*/) const { throw Exception(ErrorCodes::NOT_IMPLEMENTED, "Cannot cloneResized() column {}", getName()); } /// Returns number of values in column. [[nodiscard]] virtual size_t size() const = 0; /// There are no values in columns. [[nodiscard]] bool empty() const { return size() == 0; } /// Returns value of n-th element in universal Field representation. /// Is used in rare cases, since creation of Field instance is expensive usually. [[nodiscard]] virtual Field operator[](size_t n) const = 0; /// Like the previous one, but avoids extra copying if Field is in a container, for example. virtual void get(size_t n, Field & res) const = 0; /// If possible, returns pointer to memory chunk which contains n-th element (if it isn't possible, throws an exception) /// Is used to optimize some computations (in aggregation, for example). [[nodiscard]] virtual StringRef getDataAt(size_t n) const = 0; /// If column stores integers, it returns n-th element transformed to UInt64 using static_cast. /// If column stores floating point numbers, bits of n-th elements are copied to lower bits of UInt64, the remaining bits are zeros. /// Is used to optimize some computations (in aggregation, for example). [[nodiscard]] virtual UInt64 get64(size_t /*n*/) const { throw Exception(ErrorCodes::NOT_IMPLEMENTED, "Method get64 is not supported for {}", getName()); } /// If column stores native numeric type, it returns n-th element casted to Float64 /// Is used in regression methods to cast each features into uniform type [[nodiscard]] virtual Float64 getFloat64(size_t /*n*/) const { throw Exception(ErrorCodes::NOT_IMPLEMENTED, "Method getFloat64 is not supported for {}", getName()); } [[nodiscard]] virtual Float32 getFloat32(size_t /*n*/) const { throw Exception(ErrorCodes::NOT_IMPLEMENTED, "Method getFloat32 is not supported for {}", getName()); } /** If column is numeric, return value of n-th element, casted to UInt64. * For NULL values of Nullable column it is allowed to return arbitrary value. * Otherwise throw an exception. */ [[nodiscard]] virtual UInt64 getUInt(size_t /*n*/) const { throw Exception(ErrorCodes::NOT_IMPLEMENTED, "Method getUInt is not supported for {}", getName()); } [[nodiscard]] virtual Int64 getInt(size_t /*n*/) const { throw Exception(ErrorCodes::NOT_IMPLEMENTED, "Method getInt is not supported for {}", getName()); } [[nodiscard]] virtual bool isDefaultAt(size_t n) const = 0; [[nodiscard]] virtual bool isNullAt(size_t /*n*/) const { return false; } /** If column is numeric, return value of n-th element, casted to bool. * For NULL values of Nullable column returns false. * Otherwise throw an exception. */ [[nodiscard]] virtual bool getBool(size_t /*n*/) const { throw Exception(ErrorCodes::NOT_IMPLEMENTED, "Method getBool is not supported for {}", getName()); } /// Removes all elements outside of specified range. /// Is used in LIMIT operation, for example. [[nodiscard]] virtual Ptr cut(size_t start, size_t length) const { MutablePtr res = cloneEmpty(); res->insertRangeFrom(*this, start, length); return res; } /// Appends new value at the end of column (column's size is increased by 1). /// Is used to transform raw strings to Blocks (for example, inside input format parsers) virtual void insert(const Field & x) = 0; /// Appends new value at the end of the column if it has appropriate type and /// returns true if insert is successful and false otherwise. virtual bool tryInsert(const Field & x) = 0; /// Appends n-th element from other column with the same type. /// Is used in merge-sort and merges. It could be implemented in inherited classes more optimally than default implementation. #if !defined(DEBUG_OR_SANITIZER_BUILD) virtual void insertFrom(const IColumn & src, size_t n); #else void insertFrom(const IColumn & src, size_t n) { assertTypeEquality(src); doInsertFrom(src, n); } #endif /// Appends range of elements from other column with the same type. /// Could be used to concatenate columns. #if !defined(DEBUG_OR_SANITIZER_BUILD) virtual void insertRangeFrom(const IColumn & src, size_t start, size_t length) = 0; #else void insertRangeFrom(const IColumn & src, size_t start, size_t length) { assertTypeEquality(src); doInsertRangeFrom(src, start, length); } #endif /// Appends one element from other column with the same type multiple times. #if !defined(DEBUG_OR_SANITIZER_BUILD) virtual void insertManyFrom(const IColumn & src, size_t position, size_t length) { for (size_t i = 0; i < length; ++i) insertFrom(src, position); } #else void insertManyFrom(const IColumn & src, size_t position, size_t length) { assertTypeEquality(src); doInsertManyFrom(src, position, length); } #endif /// Appends one field multiple times. Can be optimized in inherited classes. virtual void insertMany(const Field & field, size_t length) { for (size_t i = 0; i < length; ++i) insert(field); } /// Appends data located in specified memory chunk if it is possible (throws an exception if it cannot be implemented). /// Is used to optimize some computations (in aggregation, for example). /// Parameter length could be ignored if column values have fixed size. /// All data will be inserted as single element virtual void insertData(const char * pos, size_t length) = 0; /// Appends "default value". /// Is used when there are need to increase column size, but inserting value doesn't make sense. /// For example, ColumnNullable(Nested) absolutely ignores values of nested column if it is marked as NULL. virtual void insertDefault() = 0; /// Appends "default value" multiple times. virtual void insertManyDefaults(size_t length) { for (size_t i = 0; i < length; ++i) insertDefault(); } /** Removes last n elements. * Is used to support exception-safety of several operations. * For example, sometimes insertion should be reverted if we catch an exception during operation processing. * If column has less than n elements or n == 0 - undefined behavior. */ virtual void popBack(size_t n) = 0; /** Serializes n-th element. Serialized element should be placed continuously inside Arena's memory. * Serialized value can be deserialized to reconstruct original object. Is used in aggregation. * The method is similar to getDataAt(), but can work when element's value cannot be mapped to existing continuous memory chunk, * For example, to obtain unambiguous representation of Array of strings, strings data should be interleaved with their sizes. * Parameter begin should be used with Arena::allocContinue. */ virtual StringRef serializeValueIntoArena(size_t /* n */, Arena & /* arena */, char const *& /* begin */) const { throw Exception(ErrorCodes::NOT_IMPLEMENTED, "Method serializeValueIntoArena is not supported for {}", getName()); } /// Same as above but serialize into already allocated continuous memory. /// Return pointer to the end of the serialization data. virtual char * serializeValueIntoMemory(size_t /* n */, char * /* memory */) const { throw Exception(ErrorCodes::NOT_IMPLEMENTED, "Method serializeValueIntoMemory is not supported for {}", getName()); } /// Nullable variant to avoid calling virtualized method inside ColumnNullable. virtual StringRef serializeValueIntoArenaWithNull(size_t /* n */, Arena & /* arena */, char const *& /* begin */, const UInt8 * /* is_null */) const { throw Exception(ErrorCodes::NOT_IMPLEMENTED, "Method serializeValueIntoArenaWithNull is not supported for {}", getName()); } virtual char * serializeValueIntoMemoryWithNull(size_t /* n */, char * /* memory */, const UInt8 * /* is_null */) const { throw Exception(ErrorCodes::NOT_IMPLEMENTED, "Method serializeValueIntoMemoryWithNull is not supported for {}", getName()); } /// Calculate all the sizes of serialized data in column, then added to `sizes`. /// If `is_null` is not nullptr, also take null bit into account. /// This is currently used to facilitate the allocation of memory for an entire continuous row /// in a single step. For more details, refer to the HashMethodSerialized implementation. virtual void collectSerializedValueSizes(PaddedPODArray & /* sizes */, const UInt8 * /* is_null */) const { throw Exception(ErrorCodes::NOT_IMPLEMENTED, "Method collectSerializedValueSizes is not supported for {}", getName()); } /// Deserializes a value that was serialized using IColumn::serializeValueIntoArena method. /// Returns pointer to the position after the read data. [[nodiscard]] virtual const char * deserializeAndInsertFromArena(const char * pos) = 0; /// Skip previously serialized value that was serialized using IColumn::serializeValueIntoArena method. /// Returns a pointer to the position after the deserialized data. [[nodiscard]] virtual const char * skipSerializedInArena(const char *) const = 0; /// Update state of hash function with value of n-th element. /// On subsequent calls of this method for sequence of column values of arbitrary types, /// passed bytes to hash must identify sequence of values unambiguously. virtual void updateHashWithValue(size_t n, SipHash & hash) const = 0; /// Get hash function value. Hash is calculated for each element. /// It's a fast weak hash function. Mainly need to scatter data between threads. /// WeakHash32 must have the same size as column. virtual WeakHash32 getWeakHash32() const = 0; /// Update state of hash with all column. virtual void updateHashFast(SipHash & hash) const = 0; /** Removes elements that don't match the filter. * Is used in WHERE and HAVING operations. * If result_size_hint > 0, then makes advance reserve(result_size_hint) for the result column; * if 0, then don't makes reserve(), * otherwise (i.e. < 0), makes reserve() using size of source column. */ using Filter = PaddedPODArray; [[nodiscard]] virtual Ptr filter(const Filter & filt, ssize_t result_size_hint) const = 0; /** Expand column by mask inplace. After expanding column will * satisfy the following: if we filter it by given mask, we will * get initial column. Values with indexes i: mask[i] = 0 * shouldn't be used after expanding. * If inverted is true, inverted mask will be used. */ virtual void expand(const Filter & /*mask*/, bool /*inverted*/) = 0; /// Permutes elements using specified permutation. Is used in sorting. /// limit - if it isn't 0, puts only first limit elements in the result. using Permutation = PaddedPODArray; [[nodiscard]] virtual Ptr permute(const Permutation & perm, size_t limit) const = 0; /// Creates new column with values column[indexes[:limit]]. If limit is 0, all indexes are used. /// Indexes must be one of the ColumnUInt. For default implementation, see selectIndexImpl from ColumnsCommon.h [[nodiscard]] virtual Ptr index(const IColumn & indexes, size_t limit) const = 0; /** Compares (*this)[n] and rhs[m]. Column rhs should have the same type. * Returns negative number, 0, or positive number (*this)[n] is less, equal, greater than rhs[m] respectively. * Is used in sorting. * * If one of element's value is NaN or NULLs, then: * - if nan_direction_hint == -1, NaN and NULLs are considered as least than everything other; * - if nan_direction_hint == 1, NaN and NULLs are considered as greatest than everything other. * For example, if nan_direction_hint == -1 is used by descending sorting, NaNs will be at the end. * * For non Nullable and non floating point types, nan_direction_hint is ignored. */ #if !defined(DEBUG_OR_SANITIZER_BUILD) [[nodiscard]] virtual int compareAt(size_t n, size_t m, const IColumn & rhs, int nan_direction_hint) const = 0; #else [[nodiscard]] int compareAt(size_t n, size_t m, const IColumn & rhs, int nan_direction_hint) const { assertTypeEquality(rhs); return doCompareAt(n, m, rhs, nan_direction_hint); } #endif #if USE_EMBEDDED_COMPILER [[nodiscard]] virtual bool isComparatorCompilable() const { return false; } [[nodiscard]] virtual llvm::Value * compileComparator(llvm::IRBuilderBase & /*builder*/, llvm::Value * /*lhs*/, llvm::Value * /*rhs*/, llvm::Value * /*nan_direction_hint*/) const { throw Exception(ErrorCodes::NOT_IMPLEMENTED, "Method compileComparator is not supported for {}", getName()); } #endif /// Equivalent to compareAt, but collator is used to compare values. [[nodiscard]] virtual int compareAtWithCollation(size_t, size_t, const IColumn &, int, const Collator &) const { throw Exception(ErrorCodes::BAD_COLLATION, "Collations could be specified only for String, LowCardinality(String), Nullable(String) " "or for Array or Tuple, containing it."); } /// Compare the whole column with single value from rhs column. /// If row_indexes is nullptr, it's ignored. Otherwise, it is a set of rows to compare. /// compare_results[i] will be equal to compareAt(row_indexes[i], rhs_row_num, rhs, nan_direction_hint) * direction /// row_indexes (if not ignored) will contain row numbers for which compare result is 0 /// see compareImpl for default implementation. virtual void compareColumn(const IColumn & rhs, size_t rhs_row_num, PaddedPODArray * row_indexes, PaddedPODArray & compare_results, int direction, int nan_direction_hint) const = 0; /// Check if all elements in the column have equal values. Return true if column is empty. [[nodiscard]] virtual bool hasEqualValues() const = 0; enum class PermutationSortDirection : uint8_t { Ascending = 0, Descending }; enum class PermutationSortStability : uint8_t { Unstable = 0, Stable }; /** Returns a permutation that sorts elements of this column, * i.e. perm[i]-th element of source column should be i-th element of sorted column. * direction - permutation direction. * stability - stability of result permutation. * limit - if isn't 0, then only first limit elements of the result column could be sorted. * nan_direction_hint - see above. */ virtual void getPermutation(PermutationSortDirection direction, PermutationSortStability stability, size_t limit, int nan_direction_hint, Permutation & res) const = 0; /*in updatePermutation we pass the current permutation and the intervals at which it should be sorted * Then for each interval separately (except for the last one, if there is a limit) * We sort it based on data about the current column, and find all the intervals within this * interval that had the same values in this column. we can't tell about these values in what order they * should have been, we form a new array with intervals that need to be sorted * If there is a limit, then for the last interval we do partial sorting and all that is described above, * but in addition we still find all the elements equal to the largest sorted, they will also need to be sorted. */ virtual void updatePermutation(PermutationSortDirection direction, PermutationSortStability stability, size_t limit, int nan_direction_hint, Permutation & res, EqualRanges & equal_ranges) const = 0; /** Equivalent to getPermutation and updatePermutation but collator is used to compare values. * Supported for String, LowCardinality(String), Nullable(String) and for Array and Tuple, containing them. */ virtual void getPermutationWithCollation(const Collator & /*collator*/, PermutationSortDirection /*direction*/, PermutationSortStability /*stability*/, size_t /*limit*/, int /*nan_direction_hint*/, Permutation & /*res*/) const { throw Exception(ErrorCodes::BAD_COLLATION, "Collations could be specified only for String, LowCardinality(String), Nullable(String) " "or for Array or Tuple, containing them."); } virtual void updatePermutationWithCollation(const Collator & /*collator*/, PermutationSortDirection /*direction*/, PermutationSortStability /*stability*/, size_t /*limit*/, int /*nan_direction_hint*/, Permutation & /*res*/, EqualRanges & /*equal_ranges*/) const { throw Exception(ErrorCodes::BAD_COLLATION, "Collations could be specified only for String, LowCardinality(String), Nullable(String) " "or for Array or Tuple, containing them."); } /// Estimate the cardinality (number of unique values) of the values in 'equal_range' after permutation, formally: |{ column[permutation[r]] : r in equal_range }|. virtual size_t estimateCardinalityInPermutedRange(const Permutation & permutation, const EqualRange & equal_range) const; /** Copies each element according offsets parameter. * (i-th element should be copied offsets[i] - offsets[i - 1] times.) * It is necessary in ARRAY JOIN operation. */ using Offset = UInt64; using Offsets = PaddedPODArray; [[nodiscard]] virtual Ptr replicate(const Offsets & offsets) const = 0; /** Split column to smaller columns. Each value goes to column index, selected by corresponding element of 'selector'. * Selector must contain values from 0 to num_columns - 1. * For default implementation, see scatterImpl. */ using ColumnIndex = UInt64; using Selector = PaddedPODArray; [[nodiscard]] virtual std::vector scatter(ColumnIndex num_columns, const Selector & selector) const = 0; /// Insert data from several other columns according to source mask (used in vertical merge). /// For now it is a helper to de-virtualize calls to insert*() functions inside gather loop /// (descendants should call gatherer_stream.gather(*this) to implement this function.) /// TODO: interface decoupled from ColumnGathererStream that allows non-generic specializations. virtual void gather(ColumnGathererStream & gatherer_stream) = 0; /** Computes minimum and maximum element of the column. * In addition to numeric types, the function is completely implemented for Date and DateTime. * For strings and arrays function should return default value. * (except for constant columns; they should return value of the constant). * If column is empty function should return default value. */ virtual void getExtremes(Field & min, Field & max) const = 0; /// Reserves memory for specified amount of elements. If reservation isn't possible, does nothing. /// It affects performance only (not correctness). virtual void reserve(size_t /*n*/) {} /// Returns the number of elements allocated in reserve. virtual size_t capacity() const { return size(); } /// Reserve memory before squashing all specified source columns into this column. virtual void prepareForSquashing(const std::vector & source_columns) { size_t new_size = size(); for (const auto & source_column : source_columns) new_size += source_column->size(); reserve(new_size); } /// Requests the removal of unused capacity. /// It is a non-binding request to reduce the capacity of the underlying container to its size. virtual void shrinkToFit() {} /// If we have another column as a source (owner of data), copy all data to ourself and reset source. virtual void ensureOwnership() {} /// Size of column data in memory (may be approximate) - for profiling. Zero, if could not be determined. [[nodiscard]] virtual size_t byteSize() const = 0; /// Size of single value in memory (for accounting purposes) [[nodiscard]] virtual size_t byteSizeAt(size_t /*n*/) const = 0; /// Size of memory, allocated for column. /// This is greater or equals to byteSize due to memory reservation in containers. /// Zero, if could not be determined. [[nodiscard]] virtual size_t allocatedBytes() const = 0; /// Make memory region readonly with mprotect if it is large enough. /// The operation is slow and performed only for debug builds. virtual void protect() {} /// Returns checkpoint of current state of column. virtual ColumnCheckpointPtr getCheckpoint() const { return std::make_shared(size()); } /// Updates the checkpoint with current state. It is used to avoid extra allocations in 'getCheckpoint'. virtual void updateCheckpoint(ColumnCheckpoint & checkpoint) const { checkpoint.size = size(); } /// Rollbacks column to the checkpoint. /// Unlike 'popBack' this method should work correctly even if column has invalid state. /// Sizes of columns in checkpoint must be less or equal than current size. virtual void rollback(const ColumnCheckpoint & checkpoint) { popBack(size() - checkpoint.size); } /// If the column contains subcolumns (such as Array, Nullable, etc), do callback on them. /// Shallow: doesn't do recursive calls; don't do call for itself. using MutableColumnCallback = std::function; virtual void forEachSubcolumn(MutableColumnCallback) {} /// Default implementation calls the mutable overload using const_cast. using ColumnCallback = std::function; virtual void forEachSubcolumn(ColumnCallback) const; /// Similar to forEachSubcolumn but it also do recursive calls. /// In recursive calls it's prohibited to replace pointers /// to subcolumns, so we use another callback function. using RecursiveMutableColumnCallback = std::function; virtual void forEachSubcolumnRecursively(RecursiveMutableColumnCallback) {} /// Default implementation calls the mutable overload using const_cast. using RecursiveColumnCallback = std::function; virtual void forEachSubcolumnRecursively(RecursiveColumnCallback) const; /// Columns have equal structure. /// If true - you can use "compareAt", "insertFrom", etc. methods. [[nodiscard]] virtual bool structureEquals(const IColumn &) const { throw Exception(ErrorCodes::NOT_IMPLEMENTED, "Method structureEquals is not supported for {}", getName()); } /// Returns ratio of values in column, that are equal to default value of column. /// Checks only @sample_ratio ratio of rows. [[nodiscard]] virtual double getRatioOfDefaultRows(double sample_ratio = 1.0) const = 0; /// NOLINT /// Returns number of values in column, that are equal to default value of column. [[nodiscard]] virtual UInt64 getNumberOfDefaultRows() const = 0; /// Returns indices of values in column, that not equal to default value of column. virtual void getIndicesOfNonDefaultRows(Offsets & indices, size_t from, size_t limit) const = 0; /// Returns column with @total_size elements. /// In result column values from current column are at positions from @offsets. /// Other values are filled by value from @column_with_default_value. /// @shift means how much rows to skip from the beginning of current column. /// Used to create full column from sparse. [[nodiscard]] virtual Ptr createWithOffsets(const Offsets & offsets, const ColumnConst & column_with_default_value, size_t total_rows, size_t shift) const; /// Compress column in memory to some representation that allows to decompress it back. /// Return itself if compression is not applicable for this column type. [[nodiscard]] virtual Ptr compress() const { /// No compression by default. return getPtr(); } /// If it's CompressedColumn, decompress it and return. /// Otherwise return itself. [[nodiscard]] virtual Ptr decompress() const { return getPtr(); } /// Some columns may require finalization before using of other operations. virtual void finalize() {} virtual bool isFinalized() const { return true; } MutablePtr cloneFinalized() const { auto finalized = IColumn::mutate(getPtr()); finalized->finalize(); return finalized; } [[nodiscard]] static MutablePtr mutate(Ptr ptr) { MutablePtr res = ptr->shallowMutate(); /// Now use_count is 2. ptr.reset(); /// Reset use_count to 1. res->forEachSubcolumn([](WrappedPtr & subcolumn) { subcolumn = IColumn::mutate(std::move(subcolumn).detach()); }); return res; } /// Checks if column has dynamic subcolumns. virtual bool hasDynamicStructure() const { return false; } /// For columns with dynamic subcolumns this method takes dynamic structure from source columns /// and creates proper resulting dynamic structure in advance for merge of these source columns. virtual void takeDynamicStructureFromSourceColumns(const std::vector & /*source_columns*/) {} /** Some columns can contain another columns inside. * So, we have a tree of columns. But not all combinations are possible. * There are the following rules: * * ColumnConst may be only at top. It cannot be inside any column. * ColumnNullable can contain only simple columns. */ /// Various properties on behaviour of column type. /// True if column contains something nullable inside. It's true for ColumnNullable, can be true or false for ColumnConst, etc. [[nodiscard]] virtual bool isNullable() const { return false; } /// It's a special kind of column, that contain single value, but is not a ColumnConst. [[nodiscard]] virtual bool isDummy() const { return false; } /** Memory layout properties. * * Each value of a column can be placed in memory contiguously or not. * * Example: simple columns like UInt64 or FixedString store their values contiguously in single memory buffer. * * Example: Tuple store values of each component in separate subcolumn, so the values of Tuples with at least two components are not contiguous. * Another example is Nullable. Each value have null flag, that is stored separately, so the value is not contiguous in memory. * * There are some important cases, when values are not stored contiguously, but for each value, you can get contiguous memory segment, * that will unambiguously identify the value. In this case, methods getDataAt and insertData are implemented. * Example: String column: bytes of strings are stored concatenated in one memory buffer * and offsets to that buffer are stored in another buffer. The same is for Array of fixed-size contiguous elements. * * To avoid confusion between these cases, we don't have isContiguous method. */ /// Values in column have fixed size (including the case when values span many memory segments). [[nodiscard]] virtual bool valuesHaveFixedSize() const { return isFixedAndContiguous(); } /// Values in column are represented as continuous memory segment of fixed size. Implies valuesHaveFixedSize. [[nodiscard]] virtual bool isFixedAndContiguous() const { return false; } /// If isFixedAndContiguous, returns the underlying data array, otherwise throws an exception. [[nodiscard]] virtual std::string_view getRawData() const { throw Exception(ErrorCodes::NOT_IMPLEMENTED, "Column {} is not a contiguous block of memory", getName()); } /// If valuesHaveFixedSize, returns size of value, otherwise throw an exception. [[nodiscard]] virtual size_t sizeOfValueIfFixed() const { throw Exception(ErrorCodes::CANNOT_GET_SIZE_OF_FIELD, "Values of column {} are not fixed size.", getName()); } /// Column is ColumnVector of numbers or ColumnConst of it. Note that Nullable columns are not numeric. [[nodiscard]] virtual bool isNumeric() const { return false; } /// If the only value column can contain is NULL. /// Does not imply type of object, because it can be ColumnNullable(ColumnNothing) or ColumnConst(ColumnNullable(ColumnNothing)) [[nodiscard]] virtual bool onlyNull() const { return false; } /// Can be inside ColumnNullable. [[nodiscard]] virtual bool canBeInsideNullable() const { return false; } [[nodiscard]] virtual bool lowCardinality() const { return false; } [[nodiscard]] virtual bool isSparse() const { return false; } [[nodiscard]] virtual bool isConst() const { return false; } [[nodiscard]] virtual bool isCollationSupported() const { return false; } virtual ~IColumn() = default; IColumn() = default; IColumn(const IColumn &) = default; /** Print column name, size, and recursively print all subcolumns. */ [[nodiscard]] String dumpStructure() const; protected: template void getPermutationImpl(size_t limit, Permutation & res, Compare compare, Sort full_sort, PartialSort partial_sort) const; template void updatePermutationImpl( size_t limit, Permutation & res, EqualRanges & equal_ranges, Compare compare, Equals equals, Sort full_sort, PartialSort partial_sort) const; #if defined(DEBUG_OR_SANITIZER_BUILD) virtual void doInsertFrom(const IColumn & src, size_t n); virtual void doInsertRangeFrom(const IColumn & src, size_t start, size_t length) = 0; virtual void doInsertManyFrom(const IColumn & src, size_t position, size_t length) { for (size_t i = 0; i < length; ++i) insertFrom(src, position); } virtual int doCompareAt(size_t n, size_t m, const IColumn & rhs, int nan_direction_hint) const = 0; private: void assertTypeEquality(const IColumn & rhs) const { /// For Sparse and Const columns, we can compare only internal types. It is considered normal to e.g. insert from normal vector column to a sparse vector column. /// This case is specifically handled in ColumnSparse implementation. Similar situation with Const column. /// For the rest of column types we can compare the types directly. chassert((isConst() || isSparse()) ? getDataType() == rhs.getDataType() : typeid(*this) == typeid(rhs)); } #endif }; using ColumnPtr = IColumn::Ptr; using MutableColumnPtr = IColumn::MutablePtr; using Columns = std::vector; using MutableColumns = std::vector; using ColumnRawPtrs = std::vector; template struct IsMutableColumns; template struct IsMutableColumns { static const bool value = std::is_assignable_v && IsMutableColumns::value; }; template <> struct IsMutableColumns<> { static const bool value = true; }; /// Throws LOGICAL_ERROR if the type doesn't match. template const Type & checkAndGetColumn(const IColumn & column) { return typeid_cast(column); } /// Returns nullptr if the type doesn't match. /// If you're going to dereference the returned pointer without checking for null, use the /// `const IColumn &` overload above instead. template const Type * checkAndGetColumn(const IColumn * column) { return typeid_cast(column); } template bool checkColumn(const IColumn & column) { return checkAndGetColumn(&column); } template bool checkColumn(const IColumn * column) { return checkAndGetColumn(column); } /// True if column's an ColumnConst instance. It's just a syntax sugar for type check. bool isColumnConst(const IColumn & column); /// True if column's an ColumnNullable instance. It's just a syntax sugar for type check. bool isColumnNullable(const IColumn & column); /// True if column's is ColumnNullable or ColumnLowCardinality with nullable nested column. bool isColumnNullableOrLowCardinalityNullable(const IColumn & column); /// Implement methods to devirtualize some calls of IColumn in final descendents. /// `typename Parent` is needed because some columns don't inherit IColumn directly. /// See ColumnFixedSizeHelper for example. template class IColumnHelper : public Parent { /// Devirtualize insertFrom. MutableColumns scatter(IColumn::ColumnIndex num_columns, const IColumn::Selector & selector) const override; /// Devirtualize insertFrom and insertRangeFrom. void gather(ColumnGathererStream & gatherer) override; /// Devirtualize compareAt. void compareColumn( const IColumn & rhs_base, size_t rhs_row_num, PaddedPODArray * row_indexes, PaddedPODArray & compare_results, int direction, int nan_direction_hint) const override; /// Devirtualize compareAt. bool hasEqualValues() const override; /// Devirtualize isDefaultAt. double getRatioOfDefaultRows(double sample_ratio) const override; /// Devirtualize isDefaultAt. UInt64 getNumberOfDefaultRows() const override; /// Devirtualize isDefaultAt. void getIndicesOfNonDefaultRows(IColumn::Offsets & indices, size_t from, size_t limit) const override; /// Devirtualize byteSizeAt. void collectSerializedValueSizes(PaddedPODArray & sizes, const UInt8 * is_null) const override; /// Move common implementations into the same translation unit to ensure they are properly inlined. char * serializeValueIntoMemoryWithNull(size_t n, char * memory, const UInt8 * is_null) const override; StringRef serializeValueIntoArenaWithNull(size_t n, Arena & arena, char const *& begin, const UInt8 * is_null) const override; char * serializeValueIntoMemory(size_t n, char * memory) const override; StringRef serializeValueIntoArena(size_t n, Arena & arena, char const *& begin) const override; }; }