#pragma once #include #include #include #include #include /** This class provides a way to evaluate the error in the result of applying the HyperLogLog algorithm. * Empirical observations show that large errors occur at E < 5 * 2^precision, where * E is the return value of the HyperLogLog algorithm, and `precision` is the HyperLogLog precision parameter. * See "HyperLogLog in Practice: Algorithmic Engineering of a State of the Art Cardinality Estimation Algorithm". * (S. Heule et al., Proceedings of the EDBT 2013 Conference). */ template class HyperLogLogBiasEstimator { public: static constexpr bool isTrivial() { return false; } /// Maximum number of unique values to which the correction should apply /// from the LinearCounting algorithm. static double getThreshold() { return BiasData::getThreshold(); } /// Return the error estimate. static double getBias(double raw_estimate) { const auto & estimates = BiasData::getRawEstimates(); const auto & biases = BiasData::getBiases(); auto it = std::lower_bound(estimates.begin(), estimates.end(), raw_estimate); if (it == estimates.end()) { return biases[estimates.size() - 1]; } if (*it == raw_estimate) { size_t index = std::distance(estimates.begin(), it); return biases[index]; } if (it == estimates.begin()) { return biases[0]; } /// We get the error estimate by linear interpolation. size_t index = std::distance(estimates.begin(), it); double estimate1 = estimates[index - 1]; double estimate2 = estimates[index]; double bias1 = biases[index - 1]; double bias2 = biases[index]; /// It is assumed that the estimate1 < estimate2 condition is always satisfied. double slope = (bias2 - bias1) / (estimate2 - estimate1); return bias1 + slope * (raw_estimate - estimate1); } private: /// Static checks. using TRawEstimatesRef = decltype(BiasData::getRawEstimates()); using TRawEstimates = std::remove_reference_t; using TBiasDataRef = decltype(BiasData::getBiases()); using TBiasData = std::remove_reference_t; static_assert(std::is_same_v, "Bias estimator data have inconsistent types"); static_assert(std::tuple_size::value > 0, "Bias estimator has no raw estimate data"); static_assert(std::tuple_size::value > 0, "Bias estimator has no bias data"); static_assert(std::tuple_size::value == std::tuple_size::value, "Bias estimator has inconsistent data"); }; /** Trivial case of HyperLogLogBiasEstimator: used if we do not want to fix * error. This has meaning for small values of the accuracy parameter, for example 5 or 12. * Then the corrections from the original version of the HyperLogLog algorithm are applied. * See "HyperLogLog: The analysis of a near-optimal cardinality estimation algorithm" * (P. Flajolet et al., AOFA '07: Proceedings of the 2007 International Conference on Analysis * of Algorithms) */ struct TrivialBiasEstimator { static constexpr bool isTrivial() { return true; } static double getThreshold() { return 0.0; } static double getBias(double /*raw_estimate*/) { return 0.0; } };