#pragma once #include #include #include #include #include #include #include #include "base/Decimal.h" #include #include #include #include #include #include #include #include #include #include namespace DB { static constexpr auto millisecond_multiplier = 1'000; static constexpr auto microsecond_multiplier = 1'000'000; static constexpr auto nanosecond_multiplier = 1'000'000'000; static constexpr FormatSettings::DateTimeOverflowBehavior default_date_time_overflow_behavior = FormatSettings::DateTimeOverflowBehavior::Ignore; namespace ErrorCodes { extern const int CANNOT_CONVERT_TYPE; extern const int DECIMAL_OVERFLOW; extern const int ILLEGAL_COLUMN; extern const int ILLEGAL_TYPE_OF_ARGUMENT; extern const int VALUE_IS_OUT_OF_RANGE_OF_DATA_TYPE; } /** Transformations. * Represents two functions - from datetime (UInt32) and from date (UInt16). * * Also, the "factor transformation" F is defined for the T transformation. * This is a transformation of F such that its value identifies the region of monotonicity for T * (for a fixed value of F, the transformation T is monotonic). * * Or, figuratively, if T is similar to taking the remainder of division, then F is similar to division. * * Example: for transformation T "get the day number in the month" (2015-02-03 -> 3), * factor-transformation F is "round to the nearest month" (2015-02-03 -> 2015-02-01). */ constexpr time_t MAX_DATETIME64_TIMESTAMP = 10413791999LL; // 1900-01-01 00:00:00 UTC constexpr time_t MIN_DATETIME64_TIMESTAMP = -2208988800LL; // 2299-12-31 23:59:59 UTC constexpr time_t MAX_DATETIME_TIMESTAMP = 0xFFFFFFFF; constexpr time_t MAX_DATE_TIMESTAMP = 5662310399; // 2149-06-06 23:59:59 UTC constexpr time_t MAX_DATETIME_DAY_NUM = 49710; // 2106-02-07 [[noreturn]] void throwDateIsNotSupported(const char * name); [[noreturn]] void throwDate32IsNotSupported(const char * name); [[noreturn]] void throwDateTimeIsNotSupported(const char * name); /// This factor transformation will say that the function is monotone everywhere. struct ZeroTransform { static UInt16 execute(Int64, const DateLUTImpl &) { return 0; } static UInt16 execute(UInt32, const DateLUTImpl &) { return 0; } static UInt16 execute(Int32, const DateLUTImpl &) { return 0; } static UInt16 execute(UInt16, const DateLUTImpl &) { return 0; } }; template struct ToDateImpl { static constexpr auto name = "toDate"; static UInt16 execute(const DecimalUtils::DecimalComponents & t, const DateLUTImpl & time_zone) { return execute(t.whole, time_zone); } static UInt16 execute(Int64 t, const DateLUTImpl & time_zone) { if constexpr (date_time_overflow_behavior == FormatSettings::DateTimeOverflowBehavior::Saturate) { if (t < 0) t = 0; else if (t > MAX_DATE_TIMESTAMP) t = MAX_DATE_TIMESTAMP; } else if constexpr (date_time_overflow_behavior == FormatSettings::DateTimeOverflowBehavior::Throw) { if (t < 0 || t > MAX_DATE_TIMESTAMP) [[unlikely]] throw Exception(ErrorCodes::VALUE_IS_OUT_OF_RANGE_OF_DATA_TYPE, "Value {} is out of bounds of type Date", t); } return static_cast(time_zone.toDayNum(t)); } static UInt16 execute(UInt32 t, const DateLUTImpl & time_zone) { return UInt16(time_zone.toDayNum(t)); /// never causes overflow by design } static UInt16 execute(Int32 t, const DateLUTImpl &) { if constexpr (date_time_overflow_behavior == FormatSettings::DateTimeOverflowBehavior::Saturate) { if (t < 0) return UInt16(0); if (t > DATE_LUT_MAX_DAY_NUM) return UInt16(DATE_LUT_MAX_DAY_NUM); } else if constexpr (date_time_overflow_behavior == FormatSettings::DateTimeOverflowBehavior::Throw) { if (t < 0 || t > DATE_LUT_MAX_DAY_NUM) [[unlikely]] throw Exception(ErrorCodes::VALUE_IS_OUT_OF_RANGE_OF_DATA_TYPE, "Value {} is out of bounds of type Date", t); } return static_cast(t); } static UInt16 execute(UInt16 d, const DateLUTImpl &) { return d; } static DecimalUtils::DecimalComponents executeExtendedResult(const DecimalUtils::DecimalComponents & t, const DateLUTImpl & time_zone) { return {time_zone.toDayNum(t.whole), 0}; } using FactorTransform = ZeroTransform; }; struct ToDate32Impl { static constexpr auto name = "toDate32"; static Int32 execute(Int64 t, const DateLUTImpl & time_zone) { return Int32(time_zone.toDayNum(t)); } static Int32 execute(UInt32 t, const DateLUTImpl & time_zone) { /// Don't saturate. return Int32(time_zone.toDayNum(t)); } static Int32 execute(Int32 d, const DateLUTImpl &) { return d; } static Int32 execute(UInt16 d, const DateLUTImpl &) { return d; } using FactorTransform = ZeroTransform; }; struct ToStartOfDayImpl { static constexpr auto name = "toStartOfDay"; static UInt32 execute(const DecimalUtils::DecimalComponents & t, const DateLUTImpl & time_zone) { return static_cast(time_zone.toDate(static_cast(t.whole))); } static UInt32 execute(UInt32 t, const DateLUTImpl & time_zone) { return static_cast(time_zone.toDate(t)); } static UInt32 execute(Int32 d, const DateLUTImpl & time_zone) { return static_cast(time_zone.toDate(ExtendedDayNum(d))); } static UInt32 execute(UInt16 d, const DateLUTImpl & time_zone) { return static_cast(time_zone.toDate(DayNum(d))); } static DecimalUtils::DecimalComponents executeExtendedResult(const DecimalUtils::DecimalComponents & t, const DateLUTImpl & time_zone) { return {time_zone.toDate(t.whole), 0}; } static Int64 executeExtendedResult(Int32 d, const DateLUTImpl & time_zone) { return common::mulIgnoreOverflow(time_zone.fromDayNum(ExtendedDayNum(d)), DecimalUtils::scaleMultiplier(DataTypeDateTime64::default_scale)); } using FactorTransform = ZeroTransform; }; struct ToMondayImpl { static constexpr auto name = "toMonday"; static UInt16 execute(Int64 t, const DateLUTImpl & time_zone) { //return time_zone.toFirstDayNumOfWeek(time_zone.toDayNum(t)); return time_zone.toFirstDayNumOfWeek(t); } static UInt16 execute(UInt32 t, const DateLUTImpl & time_zone) { //return time_zone.toFirstDayNumOfWeek(time_zone.toDayNum(t)); return time_zone.toFirstDayNumOfWeek(t); } static UInt16 execute(Int32 d, const DateLUTImpl & time_zone) { return time_zone.toFirstDayNumOfWeek(ExtendedDayNum(d)); } static UInt16 execute(UInt16 d, const DateLUTImpl & time_zone) { return time_zone.toFirstDayNumOfWeek(DayNum(d)); } static Int64 executeExtendedResult(Int64 t, const DateLUTImpl & time_zone) { return time_zone.toFirstDayNumOfWeek(time_zone.toDayNum(t)); } static Int32 executeExtendedResult(Int32 d, const DateLUTImpl & time_zone) { return time_zone.toFirstDayNumOfWeek(ExtendedDayNum(d)); } using FactorTransform = ZeroTransform; }; struct ToStartOfMonthImpl { static constexpr auto name = "toStartOfMonth"; static UInt16 execute(Int64 t, const DateLUTImpl & time_zone) { return time_zone.toFirstDayNumOfMonth(time_zone.toDayNum(t)); } static UInt16 execute(UInt32 t, const DateLUTImpl & time_zone) { return time_zone.toFirstDayNumOfMonth(time_zone.toDayNum(t)); } static UInt16 execute(Int32 d, const DateLUTImpl & time_zone) { return time_zone.toFirstDayNumOfMonth(ExtendedDayNum(d)); } static UInt16 execute(UInt16 d, const DateLUTImpl & time_zone) { return time_zone.toFirstDayNumOfMonth(DayNum(d)); } static Int64 executeExtendedResult(Int64 t, const DateLUTImpl & time_zone) { return time_zone.toFirstDayNumOfMonth(time_zone.toDayNum(t)); } static Int32 executeExtendedResult(Int32 d, const DateLUTImpl & time_zone) { return time_zone.toFirstDayNumOfMonth(ExtendedDayNum(d)); } using FactorTransform = ZeroTransform; }; struct ToLastDayOfMonthImpl { static constexpr auto name = "toLastDayOfMonth"; static UInt16 execute(Int64 t, const DateLUTImpl & time_zone) { return time_zone.toLastDayNumOfMonth(time_zone.toDayNum(t)); } static UInt16 execute(UInt32 t, const DateLUTImpl & time_zone) { return time_zone.toLastDayNumOfMonth(time_zone.toDayNum(t)); } static UInt16 execute(Int32 d, const DateLUTImpl & time_zone) { return time_zone.toLastDayNumOfMonth(ExtendedDayNum(d)); } static UInt16 execute(UInt16 d, const DateLUTImpl & time_zone) { return time_zone.toLastDayNumOfMonth(DayNum(d)); } static Int64 executeExtendedResult(Int64 t, const DateLUTImpl & time_zone) { return time_zone.toLastDayNumOfMonth(time_zone.toDayNum(t)); } static Int32 executeExtendedResult(Int32 d, const DateLUTImpl & time_zone) { return time_zone.toLastDayNumOfMonth(ExtendedDayNum(d)); } using FactorTransform = ZeroTransform; }; struct ToStartOfQuarterImpl { static constexpr auto name = "toStartOfQuarter"; static UInt16 execute(Int64 t, const DateLUTImpl & time_zone) { return time_zone.toFirstDayNumOfQuarter(time_zone.toDayNum(t)); } static UInt16 execute(UInt32 t, const DateLUTImpl & time_zone) { return time_zone.toFirstDayNumOfQuarter(time_zone.toDayNum(t)); } static UInt16 execute(Int32 d, const DateLUTImpl & time_zone) { return time_zone.toFirstDayNumOfQuarter(ExtendedDayNum(d)); } static UInt16 execute(UInt16 d, const DateLUTImpl & time_zone) { return time_zone.toFirstDayNumOfQuarter(DayNum(d)); } static Int64 executeExtendedResult(Int64 t, const DateLUTImpl & time_zone) { return time_zone.toFirstDayNumOfQuarter(time_zone.toDayNum(t)); } static Int32 executeExtendedResult(Int32 d, const DateLUTImpl & time_zone) { return time_zone.toFirstDayNumOfQuarter(ExtendedDayNum(d)); } using FactorTransform = ZeroTransform; }; struct ToStartOfYearImpl { static constexpr auto name = "toStartOfYear"; static UInt16 execute(Int64 t, const DateLUTImpl & time_zone) { return time_zone.toFirstDayNumOfYear(time_zone.toDayNum(t)); } static UInt16 execute(UInt32 t, const DateLUTImpl & time_zone) { return time_zone.toFirstDayNumOfYear(time_zone.toDayNum(t)); } static UInt16 execute(Int32 d, const DateLUTImpl & time_zone) { return time_zone.toFirstDayNumOfYear(ExtendedDayNum(d)); } static UInt16 execute(UInt16 d, const DateLUTImpl & time_zone) { return time_zone.toFirstDayNumOfYear(DayNum(d)); } static Int64 executeExtendedResult(Int64 t, const DateLUTImpl & time_zone) { return time_zone.toFirstDayNumOfYear(time_zone.toDayNum(t)); } static Int32 executeExtendedResult(Int32 d, const DateLUTImpl & time_zone) { return time_zone.toFirstDayNumOfYear(ExtendedDayNum(d)); } using FactorTransform = ZeroTransform; }; struct ToYearWeekImpl { static constexpr auto name = "toYearWeek"; static constexpr bool value_may_be_string = true; static UInt32 execute(Int64 t, UInt8 week_mode, const DateLUTImpl & time_zone) { // TODO: ditch toDayNum() YearWeek yw = time_zone.toYearWeek(time_zone.toDayNum(t), week_mode | static_cast(WeekModeFlag::YEAR)); return yw.first * 100 + yw.second; } static UInt32 execute(UInt32 t, UInt8 week_mode, const DateLUTImpl & time_zone) { YearWeek yw = time_zone.toYearWeek(time_zone.toDayNum(t), week_mode | static_cast(WeekModeFlag::YEAR)); return yw.first * 100 + yw.second; } static UInt32 execute(Int32 d, UInt8 week_mode, const DateLUTImpl & time_zone) { YearWeek yw = time_zone.toYearWeek(ExtendedDayNum (d), week_mode | static_cast(WeekModeFlag::YEAR)); return yw.first * 100 + yw.second; } static UInt32 execute(UInt16 d, UInt8 week_mode, const DateLUTImpl & time_zone) { YearWeek yw = time_zone.toYearWeek(DayNum(d), week_mode | static_cast(WeekModeFlag::YEAR)); return yw.first * 100 + yw.second; } using FactorTransform = ZeroTransform; }; struct ToStartOfWeekImpl { static constexpr auto name = "toStartOfWeek"; static constexpr bool value_may_be_string = false; static UInt16 execute(Int64 t, UInt8 week_mode, const DateLUTImpl & time_zone) { const int res = time_zone.toFirstDayNumOfWeek(time_zone.toDayNum(t), week_mode); return std::max(res, 0); } static UInt16 execute(UInt32 t, UInt8 week_mode, const DateLUTImpl & time_zone) { const int res = time_zone.toFirstDayNumOfWeek(time_zone.toDayNum(t), week_mode); return std::max(res, 0); } static UInt16 execute(Int32 d, UInt8 week_mode, const DateLUTImpl & time_zone) { return time_zone.toFirstDayNumOfWeek(ExtendedDayNum(d), week_mode); } static UInt16 execute(UInt16 d, UInt8 week_mode, const DateLUTImpl & time_zone) { return time_zone.toFirstDayNumOfWeek(DayNum(d), week_mode); } static Int64 executeExtendedResult(Int64 t, UInt8 week_mode, const DateLUTImpl & time_zone) { return time_zone.toFirstDayNumOfWeek(time_zone.toDayNum(t), week_mode); } static Int32 executeExtendedResult(Int32 d, UInt8 week_mode, const DateLUTImpl & time_zone) { return time_zone.toFirstDayNumOfWeek(ExtendedDayNum(d), week_mode); } using FactorTransform = ZeroTransform; }; struct ToLastDayOfWeekImpl { static constexpr auto name = "toLastDayOfWeek"; static constexpr bool value_may_be_string = false; static UInt16 execute(Int64 t, UInt8 week_mode, const DateLUTImpl & time_zone) { return time_zone.toLastDayNumOfWeek(time_zone.toDayNum(t), week_mode); } static UInt16 execute(UInt32 t, UInt8 week_mode, const DateLUTImpl & time_zone) { return time_zone.toLastDayNumOfWeek(time_zone.toDayNum(t), week_mode); } static UInt16 execute(Int32 d, UInt8 week_mode, const DateLUTImpl & time_zone) { return time_zone.toLastDayNumOfWeek(ExtendedDayNum(d), week_mode); } static UInt16 execute(UInt16 d, UInt8 week_mode, const DateLUTImpl & time_zone) { return time_zone.toLastDayNumOfWeek(DayNum(d), week_mode); } static Int64 executeExtendedResult(Int64 t, UInt8 week_mode, const DateLUTImpl & time_zone) { return time_zone.toLastDayNumOfWeek(time_zone.toDayNum(t), week_mode); } static Int32 executeExtendedResult(Int32 d, UInt8 week_mode, const DateLUTImpl & time_zone) { return time_zone.toLastDayNumOfWeek(ExtendedDayNum(d), week_mode); } using FactorTransform = ZeroTransform; }; struct ToWeekImpl { static constexpr auto name = "toWeek"; static constexpr bool value_may_be_string = true; static UInt8 execute(Int64 t, UInt8 week_mode, const DateLUTImpl & time_zone) { // TODO: ditch conversion to DayNum, since it doesn't support extended range. YearWeek yw = time_zone.toYearWeek(time_zone.toDayNum(t), week_mode); return yw.second; } static UInt8 execute(UInt32 t, UInt8 week_mode, const DateLUTImpl & time_zone) { YearWeek yw = time_zone.toYearWeek(time_zone.toDayNum(t), week_mode); return yw.second; } static UInt8 execute(Int32 d, UInt8 week_mode, const DateLUTImpl & time_zone) { YearWeek yw = time_zone.toYearWeek(ExtendedDayNum(d), week_mode); return yw.second; } static UInt8 execute(UInt16 d, UInt8 week_mode, const DateLUTImpl & time_zone) { YearWeek yw = time_zone.toYearWeek(DayNum(d), week_mode); return yw.second; } using FactorTransform = ToStartOfYearImpl; }; template struct ToStartOfInterval; static constexpr auto TO_START_OF_INTERVAL_NAME = "toStartOfInterval"; template <> struct ToStartOfInterval { static UInt32 execute(UInt16, Int64, const DateLUTImpl &, Int64) { throwDateIsNotSupported(TO_START_OF_INTERVAL_NAME); } static UInt32 execute(Int32, Int64, const DateLUTImpl &, Int64) { throwDate32IsNotSupported(TO_START_OF_INTERVAL_NAME); } static UInt32 execute(UInt32, Int64, const DateLUTImpl &, Int64) { throwDateTimeIsNotSupported(TO_START_OF_INTERVAL_NAME); } static Int64 execute(Int64 t, Int64 nanoseconds, const DateLUTImpl &, Int64 scale_multiplier, Int64 /*origin*/ = 0) { if (scale_multiplier < 1000000000) { Int64 t_nanoseconds = 0; if (common::mulOverflow(t, (static_cast(1000000000) / scale_multiplier), t_nanoseconds)) throw DB::Exception(ErrorCodes::DECIMAL_OVERFLOW, "Numeric overflow"); if (t >= 0) [[likely]] return t_nanoseconds / nanoseconds * nanoseconds; else return ((t_nanoseconds + 1) / nanoseconds - 1) * nanoseconds; } else if (t >= 0) [[likely]] return t / nanoseconds * nanoseconds; else return ((t + 1) / nanoseconds - 1) * nanoseconds; } }; template <> struct ToStartOfInterval { static UInt32 execute(UInt16, Int64, const DateLUTImpl &, Int64) { throwDateIsNotSupported(TO_START_OF_INTERVAL_NAME); } static UInt32 execute(Int32, Int64, const DateLUTImpl &, Int64) { throwDate32IsNotSupported(TO_START_OF_INTERVAL_NAME); } static UInt32 execute(UInt32, Int64, const DateLUTImpl &, Int64) { throwDateTimeIsNotSupported(TO_START_OF_INTERVAL_NAME); } static Int64 execute(Int64 t, Int64 microseconds, const DateLUTImpl &, Int64 scale_multiplier, Int64 /*origin*/ = 0) { if (scale_multiplier < 1000000) { Int64 t_microseconds = 0; if (common::mulOverflow(t, static_cast(1000000) / scale_multiplier, t_microseconds)) throw DB::Exception(ErrorCodes::DECIMAL_OVERFLOW, "Numeric overflow"); if (t >= 0) [[likely]] return t_microseconds / microseconds * microseconds; else return ((t_microseconds + 1) / microseconds - 1) * microseconds; } else if (scale_multiplier > 1000000) { Int64 scale_diff = scale_multiplier / static_cast(1000000); if (t >= 0) [[likely]] /// When we divide the `t` value we should round the result return (t + scale_diff / 2) / (microseconds * scale_diff) * microseconds; else return ((t + 1) / microseconds / scale_diff - 1) * microseconds; } else if (t >= 0) [[likely]] return t / microseconds * microseconds; else return ((t + 1) / microseconds - 1) * microseconds; } }; template <> struct ToStartOfInterval { static UInt32 execute(UInt16, Int64, const DateLUTImpl &, Int64) { throwDateIsNotSupported(TO_START_OF_INTERVAL_NAME); } static UInt32 execute(Int32, Int64, const DateLUTImpl &, Int64) { throwDate32IsNotSupported(TO_START_OF_INTERVAL_NAME); } static UInt32 execute(UInt32, Int64, const DateLUTImpl &, Int64) { throwDateTimeIsNotSupported(TO_START_OF_INTERVAL_NAME); } static Int64 execute(Int64 t, Int64 milliseconds, const DateLUTImpl &, Int64 scale_multiplier, Int64 /*origin*/ = 0) { if (scale_multiplier < 1000) { Int64 t_milliseconds = 0; if (common::mulOverflow(t, static_cast(1000) / scale_multiplier, t_milliseconds)) throw DB::Exception(ErrorCodes::DECIMAL_OVERFLOW, "Numeric overflow"); if (t >= 0) [[likely]] return t_milliseconds / milliseconds * milliseconds; else return ((t_milliseconds + 1) / milliseconds - 1) * milliseconds; } else if (scale_multiplier > 1000) { Int64 scale_diff = scale_multiplier / static_cast(1000); if (t >= 0) [[likely]] /// When we divide the `t` value we should round the result return (t + scale_diff / 2) / (milliseconds * scale_diff) * milliseconds; else return ((t + 1) / milliseconds / scale_diff - 1) * milliseconds; } else if (t >= 0) [[likely]] return t / milliseconds * milliseconds; else return ((t + 1) / milliseconds - 1) * milliseconds; } }; template <> struct ToStartOfInterval { static UInt32 execute(UInt16, Int64, const DateLUTImpl &, Int64) { throwDateIsNotSupported(TO_START_OF_INTERVAL_NAME); } static UInt32 execute(Int32, Int64, const DateLUTImpl &, Int64) { throwDate32IsNotSupported(TO_START_OF_INTERVAL_NAME); } static UInt32 execute(UInt32 t, Int64 seconds, const DateLUTImpl & time_zone, Int64) { return time_zone.toStartOfSecondInterval(t, seconds); } static Int64 execute(Int64 t, Int64 seconds, const DateLUTImpl & time_zone, Int64 scale_multiplier, Int64 /*origin*/ = 0) { return time_zone.toStartOfSecondInterval(t / scale_multiplier, seconds); } }; template <> struct ToStartOfInterval { static UInt32 execute(UInt16, Int64, const DateLUTImpl &, Int64) { throwDateIsNotSupported(TO_START_OF_INTERVAL_NAME); } static UInt32 execute(Int32, Int64, const DateLUTImpl &, Int64) { throwDate32IsNotSupported(TO_START_OF_INTERVAL_NAME); } static UInt32 execute(UInt32 t, Int64 minutes, const DateLUTImpl & time_zone, Int64) { return time_zone.toStartOfMinuteInterval(t, minutes); } static Int64 execute(Int64 t, Int64 minutes, const DateLUTImpl & time_zone, Int64 scale_multiplier, Int64 /*origin*/ = 0) { return time_zone.toStartOfMinuteInterval(t / scale_multiplier, minutes); } }; template <> struct ToStartOfInterval { static UInt32 execute(UInt16, Int64, const DateLUTImpl &, Int64) { throwDateIsNotSupported(TO_START_OF_INTERVAL_NAME); } static UInt32 execute(Int32, Int64, const DateLUTImpl &, Int64) { throwDate32IsNotSupported(TO_START_OF_INTERVAL_NAME); } static UInt32 execute(UInt32 t, Int64 hours, const DateLUTImpl & time_zone, Int64) { return time_zone.toStartOfHourInterval(t, hours); } static Int64 execute(Int64 t, Int64 hours, const DateLUTImpl & time_zone, Int64 scale_multiplier, Int64 /*origin*/ = 0) { return time_zone.toStartOfHourInterval(t / scale_multiplier, hours); } }; template <> struct ToStartOfInterval { static UInt32 execute(UInt16 d, Int64 days, const DateLUTImpl & time_zone, Int64) { return static_cast(time_zone.toStartOfDayInterval(ExtendedDayNum(d), days)); } static UInt32 execute(Int32 d, Int64 days, const DateLUTImpl & time_zone, Int64) { return static_cast(time_zone.toStartOfDayInterval(ExtendedDayNum(d), days)); } static UInt32 execute(UInt32 t, Int64 days, const DateLUTImpl & time_zone, Int64) { return static_cast(time_zone.toStartOfDayInterval(time_zone.toDayNum(t), days)); } static Int64 execute(Int64 t, Int64 days, const DateLUTImpl & time_zone, Int64 scale_multiplier, Int64 /*origin*/ = 0) { return time_zone.toStartOfDayInterval(time_zone.toDayNum(t / scale_multiplier), days); } }; template <> struct ToStartOfInterval { static UInt16 execute(UInt16 d, Int64 weeks, const DateLUTImpl & time_zone, Int64) { return time_zone.toStartOfWeekInterval(DayNum(d), weeks); } static UInt16 execute(Int32 d, Int64 weeks, const DateLUTImpl & time_zone, Int64) { return time_zone.toStartOfWeekInterval(ExtendedDayNum(d), weeks); } static UInt16 execute(UInt32 t, Int64 weeks, const DateLUTImpl & time_zone, Int64) { return time_zone.toStartOfWeekInterval(time_zone.toDayNum(t), weeks); } static Int64 execute(Int64 t, Int64 weeks, const DateLUTImpl & time_zone, Int64 scale_multiplier, Int64 origin = 0) { if (origin == 0) return time_zone.toStartOfWeekInterval(time_zone.toDayNum(t / scale_multiplier), weeks); return ToStartOfInterval::execute(t, weeks * 7, time_zone, scale_multiplier, origin); } }; template <> struct ToStartOfInterval { static UInt16 execute(UInt16 d, Int64 months, const DateLUTImpl & time_zone, Int64) { return time_zone.toStartOfMonthInterval(DayNum(d), months); } static UInt16 execute(Int32 d, Int64 months, const DateLUTImpl & time_zone, Int64) { return time_zone.toStartOfMonthInterval(ExtendedDayNum(d), months); } static UInt16 execute(UInt32 t, Int64 months, const DateLUTImpl & time_zone, Int64) { return time_zone.toStartOfMonthInterval(time_zone.toDayNum(t), months); } static Int64 execute(Int64 t, Int64 months, const DateLUTImpl & time_zone, Int64 scale_multiplier, Int64 origin = 0) { const Int64 scaled_time = t / scale_multiplier; if (origin == 0) return time_zone.toStartOfMonthInterval(time_zone.toDayNum(scaled_time), months); const Int64 scaled_origin = origin / scale_multiplier; const Int64 days = time_zone.toDayOfMonth(scaled_time + scaled_origin) - time_zone.toDayOfMonth(scaled_origin); Int64 months_to_add = time_zone.toMonth(scaled_time + scaled_origin) - time_zone.toMonth(scaled_origin); const Int64 years = time_zone.toYear(scaled_time + scaled_origin) - time_zone.toYear(scaled_origin); months_to_add = days < 0 ? months_to_add - 1 : months_to_add; months_to_add += years * 12; Int64 month_multiplier = (months_to_add / months) * months; return (time_zone.addMonths(time_zone.toDate(scaled_origin), month_multiplier) - time_zone.toDate(scaled_origin)); } }; template <> struct ToStartOfInterval { static UInt16 execute(UInt16 d, Int64 quarters, const DateLUTImpl & time_zone, Int64) { return time_zone.toStartOfQuarterInterval(DayNum(d), quarters); } static UInt16 execute(Int32 d, Int64 quarters, const DateLUTImpl & time_zone, Int64) { return time_zone.toStartOfQuarterInterval(ExtendedDayNum(d), quarters); } static UInt16 execute(UInt32 t, Int64 quarters, const DateLUTImpl & time_zone, Int64) { return time_zone.toStartOfQuarterInterval(time_zone.toDayNum(t), quarters); } static Int64 execute(Int64 t, Int64 quarters, const DateLUTImpl & time_zone, Int64 scale_multiplier, Int64 origin = 0) { if (origin == 0) return time_zone.toStartOfQuarterInterval(time_zone.toDayNum(t / scale_multiplier), quarters); return ToStartOfInterval::execute(t, quarters * 3, time_zone, scale_multiplier, origin); } }; template <> struct ToStartOfInterval { static UInt16 execute(UInt16 d, Int64 years, const DateLUTImpl & time_zone, Int64) { return time_zone.toStartOfYearInterval(DayNum(d), years); } static UInt16 execute(Int32 d, Int64 years, const DateLUTImpl & time_zone, Int64) { return time_zone.toStartOfYearInterval(ExtendedDayNum(d), years); } static UInt16 execute(UInt32 t, Int64 years, const DateLUTImpl & time_zone, Int64) { return time_zone.toStartOfYearInterval(time_zone.toDayNum(t), years); } static Int64 execute(Int64 t, Int64 years, const DateLUTImpl & time_zone, Int64 scale_multiplier, Int64 origin = 0) { if (origin == 0) return time_zone.toStartOfYearInterval(time_zone.toDayNum(t / scale_multiplier), years); return ToStartOfInterval::execute(t, years * 12, time_zone, scale_multiplier, origin); } }; struct ToTimeImpl { /// When transforming to time, the date will be equated to 1970-01-02. static constexpr auto name = "toTime"; static UInt32 execute(const DecimalUtils::DecimalComponents & t, const DateLUTImpl & time_zone) { return static_cast(time_zone.toTime(t.whole) + 86400); } static UInt32 execute(UInt32 t, const DateLUTImpl & time_zone) { return static_cast(time_zone.toTime(t) + 86400); } static UInt32 execute(Int32, const DateLUTImpl &) { throwDate32IsNotSupported(name); } static UInt32 execute(UInt16, const DateLUTImpl &) { throwDateIsNotSupported(name); } static constexpr bool hasPreimage() { return false; } using FactorTransform = ToDateImpl<>; }; struct ToStartOfMinuteImpl { static constexpr auto name = "toStartOfMinute"; static UInt32 execute(const DecimalUtils::DecimalComponents & t, const DateLUTImpl & time_zone) { return static_cast(time_zone.toStartOfMinute(t.whole)); } static UInt32 execute(UInt32 t, const DateLUTImpl & time_zone) { return time_zone.toStartOfMinute(t); } static UInt32 execute(Int32, const DateLUTImpl &) { throwDate32IsNotSupported(name); } static UInt32 execute(UInt16, const DateLUTImpl &) { throwDateIsNotSupported(name); } static DecimalUtils::DecimalComponents executeExtendedResult(const DecimalUtils::DecimalComponents & t, const DateLUTImpl & time_zone) { return {time_zone.toStartOfMinute(t.whole), 0}; } static Int64 executeExtendedResult(Int32, const DateLUTImpl &) { throwDate32IsNotSupported(name); } using FactorTransform = ZeroTransform; }; // Rounding towards negative infinity. // 1.01 => 1.00 // -1.01 => -2 struct ToStartOfSecondImpl { static constexpr auto name = "toStartOfSecond"; static DateTime64 execute(const DateTime64 & datetime64, Int64 scale_multiplier, const DateLUTImpl &) { auto fractional_with_sign = DecimalUtils::getFractionalPartWithScaleMultiplier(datetime64, scale_multiplier); // given that scale is 3, scale_multiplier is 1000 // for DateTime64 value of 123.456: // 123456 - 456 = 123000 // for DateTime64 value of -123.456: // -123456 - (1000 + (-456)) = -124000 if (fractional_with_sign < 0) fractional_with_sign += scale_multiplier; return datetime64 - fractional_with_sign; } static UInt32 execute(UInt32, const DateLUTImpl &) { throw Exception(ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT, "Illegal type DateTime of argument for function {}", name); } static UInt32 execute(Int32, const DateLUTImpl &) { throwDate32IsNotSupported(name); } static UInt32 execute(UInt16, const DateLUTImpl &) { throwDateIsNotSupported(name); } static constexpr bool hasPreimage() { return false; } using FactorTransform = ZeroTransform; }; struct ToStartOfMillisecondImpl { static constexpr auto name = "toStartOfMillisecond"; static DateTime64 execute(const DateTime64 & datetime64, Int64 scale_multiplier, const DateLUTImpl &) { // given that scale is 6, scale_multiplier is 1000000 // for DateTime64 value of 123.456789: // 123456789 - 789 = 123456000 // for DateTime64 value of -123.456789: // -123456789 - (1000 + (-789)) = -123457000 if (scale_multiplier == 1000) { return datetime64; } if (scale_multiplier <= 1000) { return datetime64 * (1000 / scale_multiplier); } auto droppable_part_with_sign = DecimalUtils::getFractionalPartWithScaleMultiplier(datetime64, scale_multiplier / 1000); if (droppable_part_with_sign < 0) droppable_part_with_sign += scale_multiplier; return datetime64 - droppable_part_with_sign; } static UInt32 execute(UInt32, const DateLUTImpl &) { throw Exception(ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT, "Illegal type DateTime of argument for function {}", name); } static UInt32 execute(Int32, const DateLUTImpl &) { throwDate32IsNotSupported(name); } static UInt32 execute(UInt16, const DateLUTImpl &) { throwDateIsNotSupported(name); } static constexpr bool hasPreimage() { return false; } using FactorTransform = ZeroTransform; }; struct ToStartOfMicrosecondImpl { static constexpr auto name = "toStartOfMicrosecond"; static DateTime64 execute(const DateTime64 & datetime64, Int64 scale_multiplier, const DateLUTImpl &) { // @see ToStartOfMillisecondImpl if (scale_multiplier == 1000000) { return datetime64; } if (scale_multiplier <= 1000000) { return datetime64 * (1000000 / scale_multiplier); } auto droppable_part_with_sign = DecimalUtils::getFractionalPartWithScaleMultiplier(datetime64, scale_multiplier / 1000000); if (droppable_part_with_sign < 0) droppable_part_with_sign += scale_multiplier; return datetime64 - droppable_part_with_sign; } static UInt32 execute(UInt32, const DateLUTImpl &) { throw Exception(ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT, "Illegal type DateTime of argument for function {}", name); } static UInt32 execute(Int32, const DateLUTImpl &) { throwDate32IsNotSupported(name); } static UInt32 execute(UInt16, const DateLUTImpl &) { throwDateIsNotSupported(name); } static constexpr bool hasPreimage() { return false; } using FactorTransform = ZeroTransform; }; struct ToStartOfNanosecondImpl { static constexpr auto name = "toStartOfNanosecond"; static DateTime64 execute(const DateTime64 & datetime64, Int64 scale_multiplier, const DateLUTImpl &) { // @see ToStartOfMillisecondImpl if (scale_multiplier == 1000000000) { return datetime64; } if (scale_multiplier <= 1000000000) { return datetime64 * (1000000000 / scale_multiplier); } throw Exception(ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT, "Illegal type of argument for function {}, DateTime64 expected", name); } static UInt32 execute(UInt32, const DateLUTImpl &) { throw Exception(ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT, "Illegal type DateTime of argument for function {}", name); } static UInt32 execute(Int32, const DateLUTImpl &) { throwDate32IsNotSupported(name); } static UInt32 execute(UInt16, const DateLUTImpl &) { throwDateIsNotSupported(name); } static constexpr bool hasPreimage() { return false; } using FactorTransform = ZeroTransform; }; struct ToStartOfFiveMinutesImpl { static constexpr auto name = "toStartOfFiveMinutes"; static UInt32 execute(const DecimalUtils::DecimalComponents & t, const DateLUTImpl & time_zone) { return static_cast(time_zone.toStartOfFiveMinutes(t.whole)); } static UInt32 execute(UInt32 t, const DateLUTImpl & time_zone) { return time_zone.toStartOfFiveMinutes(t); } static UInt32 execute(Int32, const DateLUTImpl &) { throwDate32IsNotSupported(name); } static UInt32 execute(UInt16, const DateLUTImpl &) { throwDateIsNotSupported(name); } static DecimalUtils::DecimalComponents executeExtendedResult(const DecimalUtils::DecimalComponents & t, const DateLUTImpl & time_zone) { return {time_zone.toStartOfFiveMinutes(t.whole), 0}; } static Int64 executeExtendedResult(Int32, const DateLUTImpl &) { throwDate32IsNotSupported(name); } using FactorTransform = ZeroTransform; }; struct ToStartOfTenMinutesImpl { static constexpr auto name = "toStartOfTenMinutes"; static UInt32 execute(const DecimalUtils::DecimalComponents & t, const DateLUTImpl & time_zone) { return static_cast(time_zone.toStartOfTenMinutes(t.whole)); } static UInt32 execute(UInt32 t, const DateLUTImpl & time_zone) { return time_zone.toStartOfTenMinutes(t); } static UInt32 execute(Int32, const DateLUTImpl &) { throwDate32IsNotSupported(name); } static UInt32 execute(UInt16, const DateLUTImpl &) { throwDateIsNotSupported(name); } static DecimalUtils::DecimalComponents executeExtendedResult(const DecimalUtils::DecimalComponents & t, const DateLUTImpl & time_zone) { return {time_zone.toStartOfTenMinutes(t.whole), 0}; } static Int64 executeExtendedResult(Int32, const DateLUTImpl &) { throwDate32IsNotSupported(name); } using FactorTransform = ZeroTransform; }; struct ToStartOfFifteenMinutesImpl { static constexpr auto name = "toStartOfFifteenMinutes"; static UInt32 execute(const DecimalUtils::DecimalComponents & t, const DateLUTImpl & time_zone) { return static_cast(time_zone.toStartOfFifteenMinutes(t.whole)); } static UInt32 execute(UInt32 t, const DateLUTImpl & time_zone) { return time_zone.toStartOfFifteenMinutes(t); } static UInt32 execute(Int32, const DateLUTImpl &) { throwDate32IsNotSupported(name); } static UInt32 execute(UInt16, const DateLUTImpl &) { throwDateIsNotSupported(name); } static DecimalUtils::DecimalComponents executeExtendedResult(const DecimalUtils::DecimalComponents & t, const DateLUTImpl & time_zone) { return {time_zone.toStartOfFifteenMinutes(t.whole), 0}; } static Int64 executeExtendedResult(Int32, const DateLUTImpl &) { throwDate32IsNotSupported(name); } using FactorTransform = ZeroTransform; }; /// Round to start of half-an-hour length interval with unspecified offset. This transform is specific for Metrica web analytics system. struct TimeSlotImpl { static constexpr auto name = "timeSlot"; static UInt32 execute(const DecimalUtils::DecimalComponents & t, const DateLUTImpl &) { return static_cast(t.whole / 1800 * 1800); } static UInt32 execute(UInt32 t, const DateLUTImpl &) { return t / 1800 * 1800; } static UInt32 execute(Int32, const DateLUTImpl &) { throwDate32IsNotSupported(name); } static UInt32 execute(UInt16, const DateLUTImpl &) { throwDateIsNotSupported(name); } static DecimalUtils::DecimalComponents executeExtendedResult(const DecimalUtils::DecimalComponents & t, const DateLUTImpl &) { if (likely(t.whole >= 0)) return {t.whole / 1800 * 1800, 0}; return {(t.whole + 1 - 1800) / 1800 * 1800, 0}; } static Int64 executeExtendedResult(Int32, const DateLUTImpl &) { throwDate32IsNotSupported(name); } using FactorTransform = ZeroTransform; }; struct ToStartOfHourImpl { static constexpr auto name = "toStartOfHour"; static UInt32 execute(const DecimalUtils::DecimalComponents & t, const DateLUTImpl & time_zone) { return static_cast(time_zone.toStartOfHour(t.whole)); } static UInt32 execute(UInt32 t, const DateLUTImpl & time_zone) { return time_zone.toStartOfHour(t); } static UInt32 execute(Int32, const DateLUTImpl &) { throwDate32IsNotSupported(name); } static UInt32 execute(UInt16, const DateLUTImpl &) { throwDateIsNotSupported(name); } static DecimalUtils::DecimalComponents executeExtendedResult(const DecimalUtils::DecimalComponents & t, const DateLUTImpl & time_zone) { return {time_zone.toStartOfHour(t.whole), 0}; } static Int64 executeExtendedResult(Int32, const DateLUTImpl &) { throwDate32IsNotSupported(name); } using FactorTransform = ZeroTransform; }; struct ToYearImpl { static constexpr auto name = "toYear"; static UInt16 execute(UInt64 t, const DateLUTImpl & time_zone) { return time_zone.toYear(t); } static UInt16 execute(Int64 t, const DateLUTImpl & time_zone) { return time_zone.toYear(t); } static UInt16 execute(UInt32 t, const DateLUTImpl & time_zone) { return time_zone.toYear(t); } static UInt16 execute(Int32 d, const DateLUTImpl & time_zone) { return time_zone.toYear(ExtendedDayNum(d)); } static UInt16 execute(UInt16 d, const DateLUTImpl & time_zone) { return time_zone.toYear(DayNum(d)); } static constexpr bool hasPreimage() { return true; } static OptionalFieldInterval getPreimage(const IDataType & type, const Field & point) { if (point.getType() != Field::Types::UInt64) return std::nullopt; auto year = point.safeGet(); if (year < DATE_LUT_MIN_YEAR || year >= DATE_LUT_MAX_YEAR) return std::nullopt; const DateLUTImpl & date_lut = DateLUT::instance("UTC"); auto start_time = date_lut.makeDateTime(year, 1, 1, 0, 0, 0); auto end_time = date_lut.addYears(start_time, 1); if (isDateOrDate32(type) || isDateTime(type) || isDateTime64(type)) return {std::make_pair(Field(start_time), Field(end_time))}; throw Exception( ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT, "Illegal type {} of argument of function {}. Should be Date, Date32, DateTime or DateTime64", type.getName(), name); } using FactorTransform = ZeroTransform; }; struct ToWeekYearImpl { static constexpr auto name = "toWeekYear"; static constexpr Int8 week_mode = 3; static UInt16 execute(UInt64 t, const DateLUTImpl & time_zone) { return time_zone.toYearWeek(t, week_mode).first; } static UInt16 execute(Int64 t, const DateLUTImpl & time_zone) { return time_zone.toYearWeek(t, week_mode).first; } static UInt16 execute(UInt32 t, const DateLUTImpl & time_zone) { return time_zone.toYearWeek(t, week_mode).first; } static UInt16 execute(Int32 d, const DateLUTImpl & time_zone) { return time_zone.toYearWeek(ExtendedDayNum(d), week_mode).first; } static UInt16 execute(UInt16 d, const DateLUTImpl & time_zone) { return time_zone.toYearWeek(DayNum(d), week_mode).first; } using FactorTransform = ZeroTransform; }; struct ToWeekOfWeekYearImpl { static constexpr auto name = "toWeekOfWeekYear"; static UInt16 execute(UInt64 t, const DateLUTImpl & time_zone) { return time_zone.toISOWeek(t); } static UInt16 execute(Int64 t, const DateLUTImpl & time_zone) { return time_zone.toISOWeek(t); } static UInt16 execute(UInt32 t, const DateLUTImpl & time_zone) { return time_zone.toISOWeek(t); } static UInt16 execute(Int32 d, const DateLUTImpl & time_zone) { return time_zone.toISOWeek(ExtendedDayNum(d)); } static UInt16 execute(UInt16 d, const DateLUTImpl & time_zone) { return time_zone.toISOWeek(DayNum(d)); } using FactorTransform = ZeroTransform; }; struct ToQuarterImpl { static constexpr auto name = "toQuarter"; static UInt8 execute(UInt64 t, const DateLUTImpl & time_zone) { return time_zone.toQuarter(t); } static UInt8 execute(Int64 t, const DateLUTImpl & time_zone) { return time_zone.toQuarter(t); } static UInt8 execute(UInt32 t, const DateLUTImpl & time_zone) { return time_zone.toQuarter(t); } static UInt8 execute(Int32 d, const DateLUTImpl & time_zone) { return time_zone.toQuarter(ExtendedDayNum(d)); } static UInt8 execute(UInt16 d, const DateLUTImpl & time_zone) { return time_zone.toQuarter(DayNum(d)); } static constexpr bool hasPreimage() { return false; } using FactorTransform = ToStartOfYearImpl; }; struct ToMonthImpl { static constexpr auto name = "toMonth"; static UInt8 execute(UInt64 t, const DateLUTImpl & time_zone) { return time_zone.toMonth(t); } static UInt8 execute(Int64 t, const DateLUTImpl & time_zone) { return time_zone.toMonth(t); } static UInt8 execute(UInt32 t, const DateLUTImpl & time_zone) { return time_zone.toMonth(t); } static UInt8 execute(Int32 d, const DateLUTImpl & time_zone) { return time_zone.toMonth(ExtendedDayNum(d)); } static UInt8 execute(UInt16 d, const DateLUTImpl & time_zone) { return time_zone.toMonth(DayNum(d)); } static constexpr bool hasPreimage() { return false; } using FactorTransform = ToStartOfYearImpl; }; struct ToDayOfMonthImpl { static constexpr auto name = "toDayOfMonth"; static UInt8 execute(UInt64 t, const DateLUTImpl & time_zone) { return time_zone.toDayOfMonth(t); } static UInt8 execute(Int64 t, const DateLUTImpl & time_zone) { return time_zone.toDayOfMonth(t); } static UInt8 execute(UInt32 t, const DateLUTImpl & time_zone) { return time_zone.toDayOfMonth(t); } static UInt8 execute(Int32 d, const DateLUTImpl & time_zone) { return time_zone.toDayOfMonth(ExtendedDayNum(d)); } static UInt8 execute(UInt16 d, const DateLUTImpl & time_zone) { return time_zone.toDayOfMonth(DayNum(d)); } static constexpr bool hasPreimage() { return false; } using FactorTransform = ToStartOfMonthImpl; }; struct ToDayOfWeekImpl { static constexpr auto name = "toDayOfWeek"; static constexpr bool value_may_be_string = true; static UInt8 execute(UInt64 t, UInt8 mode, const DateLUTImpl & time_zone) { return time_zone.toDayOfWeek(t, mode); } static UInt8 execute(Int64 t, UInt8 mode, const DateLUTImpl & time_zone) { return time_zone.toDayOfWeek(t, mode); } static UInt8 execute(UInt32 t, UInt8 mode, const DateLUTImpl & time_zone) { return time_zone.toDayOfWeek(t, mode); } static UInt8 execute(Int32 d, UInt8 mode, const DateLUTImpl & time_zone) { return time_zone.toDayOfWeek(ExtendedDayNum(d), mode); } static UInt8 execute(UInt16 d, UInt8 mode, const DateLUTImpl & time_zone) { return time_zone.toDayOfWeek(DayNum(d), mode); } using FactorTransform = ToMondayImpl; }; struct ToDayOfYearImpl { static constexpr auto name = "toDayOfYear"; static UInt16 execute(UInt64 t, const DateLUTImpl & time_zone) { return time_zone.toDayOfYear(t); } static UInt16 execute(Int64 t, const DateLUTImpl & time_zone) { return time_zone.toDayOfYear(t); } static UInt16 execute(UInt32 t, const DateLUTImpl & time_zone) { return time_zone.toDayOfYear(t); } static UInt16 execute(Int32 d, const DateLUTImpl & time_zone) { return time_zone.toDayOfYear(ExtendedDayNum(d)); } static UInt16 execute(UInt16 d, const DateLUTImpl & time_zone) { return time_zone.toDayOfYear(DayNum(d)); } static constexpr bool hasPreimage() { return false; } using FactorTransform = ToStartOfYearImpl; }; struct ToDaysSinceYearZeroImpl { private: static constexpr auto SECONDS_PER_DAY = 60 * 60 * 24; public: static constexpr auto DAYS_BETWEEN_YEARS_0_AND_1970 = 719'528; /// 01 January, each. Constant taken from Java LocalDate. Consistent with MySQL's TO_DAYS(). static constexpr auto name = "toDaysSinceYearZero"; static UInt32 execute(Int64 t, const DateLUTImpl & time_zone) { return DAYS_BETWEEN_YEARS_0_AND_1970 + static_cast(time_zone.toDayNum(t)); } static UInt32 execute(UInt32 d, const DateLUTImpl &) { return DAYS_BETWEEN_YEARS_0_AND_1970 + d / SECONDS_PER_DAY; } static UInt32 execute(Int32 d, const DateLUTImpl &) { return DAYS_BETWEEN_YEARS_0_AND_1970 + d; } static UInt32 execute(UInt16 d, const DateLUTImpl &) { return DAYS_BETWEEN_YEARS_0_AND_1970 + d; } static constexpr bool hasPreimage() { return false; } using FactorTransform = ZeroTransform; }; struct ToHourImpl { static constexpr auto name = "toHour"; static UInt8 execute(UInt64 t, const DateLUTImpl & time_zone) { return time_zone.toHour(t); } static UInt8 execute(Int64 t, const DateLUTImpl & time_zone) { return time_zone.toHour(t); } static UInt8 execute(UInt32 t, const DateLUTImpl & time_zone) { return time_zone.toHour(t); } static UInt8 execute(Int32, const DateLUTImpl &) { throwDate32IsNotSupported(name); } static UInt8 execute(UInt16, const DateLUTImpl &) { throwDateIsNotSupported(name); } static constexpr bool hasPreimage() { return false; } using FactorTransform = ToDateImpl<>; }; struct TimezoneOffsetImpl { static constexpr auto name = "timezoneOffset"; static time_t execute(UInt64 t, const DateLUTImpl & time_zone) { return time_zone.timezoneOffset(t); } static time_t execute(Int64 t, const DateLUTImpl & time_zone) { return time_zone.timezoneOffset(t); } static time_t execute(UInt32 t, const DateLUTImpl & time_zone) { return time_zone.timezoneOffset(t); } static time_t execute(Int32, const DateLUTImpl &) { throwDate32IsNotSupported(name); } static time_t execute(UInt16, const DateLUTImpl &) { throwDateIsNotSupported(name); } static constexpr bool hasPreimage() { return false; } using FactorTransform = ToTimeImpl; }; struct ToMinuteImpl { static constexpr auto name = "toMinute"; static UInt8 execute(UInt64 t, const DateLUTImpl & time_zone) { return time_zone.toMinute(t); } static UInt8 execute(Int64 t, const DateLUTImpl & time_zone) { return time_zone.toMinute(t); } static UInt8 execute(UInt32 t, const DateLUTImpl & time_zone) { return time_zone.toMinute(t); } static UInt8 execute(Int32, const DateLUTImpl &) { throwDate32IsNotSupported(name); } static UInt8 execute(UInt16, const DateLUTImpl &) { throwDateIsNotSupported(name); } static constexpr bool hasPreimage() { return false; } using FactorTransform = ToStartOfHourImpl; }; struct ToSecondImpl { static constexpr auto name = "toSecond"; static UInt8 execute(UInt64 t, const DateLUTImpl & time_zone) { return time_zone.toSecond(t); } static UInt8 execute(Int64 t, const DateLUTImpl & time_zone) { return time_zone.toSecond(t); } static UInt8 execute(UInt32 t, const DateLUTImpl & time_zone) { return time_zone.toSecond(t); } static UInt8 execute(Int32, const DateLUTImpl &) { throwDate32IsNotSupported(name); } static UInt8 execute(UInt16, const DateLUTImpl &) { throwDateIsNotSupported(name); } static constexpr bool hasPreimage() { return false; } using FactorTransform = ToStartOfMinuteImpl; }; struct ToMillisecondImpl { static constexpr auto name = "toMillisecond"; static UInt16 execute(const DateTime64 & datetime64, Int64 scale_multiplier, const DateLUTImpl & time_zone) { return time_zone.toMillisecond(datetime64, scale_multiplier); } static UInt16 execute(UInt32, const DateLUTImpl &) { return 0; } static UInt16 execute(Int32, const DateLUTImpl &) { throwDate32IsNotSupported(name); } static UInt16 execute(UInt16, const DateLUTImpl &) { throwDateIsNotSupported(name); } static constexpr bool hasPreimage() { return false; } using FactorTransform = ZeroTransform; }; struct ToISOYearImpl { static constexpr auto name = "toISOYear"; static UInt16 execute(UInt64 t, const DateLUTImpl & time_zone) { return time_zone.toISOYear(time_zone.toDayNum(t)); } static UInt16 execute(Int64 t, const DateLUTImpl & time_zone) { return time_zone.toISOYear(time_zone.toDayNum(t)); } static UInt16 execute(UInt32 t, const DateLUTImpl & time_zone) { return time_zone.toISOYear(time_zone.toDayNum(t)); } static UInt16 execute(Int32 d, const DateLUTImpl & time_zone) { return time_zone.toISOYear(ExtendedDayNum(d)); } static UInt16 execute(UInt16 d, const DateLUTImpl & time_zone) { return time_zone.toISOYear(DayNum(d)); } static constexpr bool hasPreimage() { return false; } using FactorTransform = ZeroTransform; }; struct ToStartOfISOYearImpl { static constexpr auto name = "toStartOfISOYear"; static UInt16 execute(Int64 t, const DateLUTImpl & time_zone) { return t < 0 ? 0 : time_zone.toFirstDayNumOfISOYear(ExtendedDayNum(std::min(Int32(time_zone.toDayNum(t)), Int32(DATE_LUT_MAX_DAY_NUM)))); } static UInt16 execute(UInt32 t, const DateLUTImpl & time_zone) { return time_zone.toFirstDayNumOfISOYear(time_zone.toDayNum(t)); } static UInt16 execute(Int32 d, const DateLUTImpl & time_zone) { return d < 0 ? 0 : time_zone.toFirstDayNumOfISOYear(ExtendedDayNum(std::min(d, Int32(DATE_LUT_MAX_DAY_NUM)))); } static UInt16 execute(UInt16 d, const DateLUTImpl & time_zone) { return time_zone.toFirstDayNumOfISOYear(DayNum(d)); } static Int64 executeExtendedResult(Int64 t, const DateLUTImpl & time_zone) { return time_zone.toFirstDayNumOfISOYear(time_zone.toDayNum(t)); } static Int32 executeExtendedResult(Int32 d, const DateLUTImpl & time_zone) { return time_zone.toFirstDayNumOfISOYear(ExtendedDayNum(d)); } using FactorTransform = ZeroTransform; }; struct ToISOWeekImpl { static constexpr auto name = "toISOWeek"; static UInt8 execute(UInt64 t, const DateLUTImpl & time_zone) { return time_zone.toISOWeek(time_zone.toDayNum(t)); } static UInt8 execute(Int64 t, const DateLUTImpl & time_zone) { return time_zone.toISOWeek(time_zone.toDayNum(t)); } static UInt8 execute(UInt32 t, const DateLUTImpl & time_zone) { return time_zone.toISOWeek(time_zone.toDayNum(t)); } static UInt8 execute(Int32 d, const DateLUTImpl & time_zone) { return time_zone.toISOWeek(ExtendedDayNum(d)); } static UInt8 execute(UInt16 d, const DateLUTImpl & time_zone) { return time_zone.toISOWeek(DayNum(d)); } static constexpr bool hasPreimage() { return false; } using FactorTransform = ToISOYearImpl; }; enum class ResultPrecision : uint8_t { Standard, Extended }; /// Standard precision results (precision_ == ResultPrecision::Standard) potentially lead to overflows when returning values. /// This mode is used by SQL functions "toRelative*Num()" which cannot easily be changed due to backward compatibility. /// According to documentation, these functions merely need to compute the time difference to a deterministic, fixed point in the past. /// As a future TODO, we should fix their behavior in a backwards-compatible way. /// See https://github.com/ClickHouse/ClickHouse/issues/41977#issuecomment-1267536814. template struct ToRelativeYearNumImpl { static constexpr auto name = "toRelativeYearNum"; static auto execute(Int64 t, const DateLUTImpl & time_zone) { if constexpr (precision_ == ResultPrecision::Extended) return time_zone.toYear(t); else return static_cast(time_zone.toYear(t)); } static UInt16 execute(UInt32 t, const DateLUTImpl & time_zone) { return time_zone.toYear(static_cast(t)); } static auto execute(Int32 d, const DateLUTImpl & time_zone) { if constexpr (precision_ == ResultPrecision::Extended) return time_zone.toYear(ExtendedDayNum(d)); else return static_cast(time_zone.toYear(ExtendedDayNum(d))); } static UInt16 execute(UInt16 d, const DateLUTImpl & time_zone) { return time_zone.toYear(DayNum(d)); } static constexpr bool hasPreimage() { return false; } using FactorTransform = ZeroTransform; }; template struct ToRelativeQuarterNumImpl { static constexpr auto name = "toRelativeQuarterNum"; static auto execute(Int64 t, const DateLUTImpl & time_zone) { if constexpr (precision_ == ResultPrecision::Extended) return time_zone.toRelativeQuarterNum(t); else return static_cast(time_zone.toRelativeQuarterNum(t)); } static UInt16 execute(UInt32 t, const DateLUTImpl & time_zone) { return time_zone.toRelativeQuarterNum(static_cast(t)); } static auto execute(Int32 d, const DateLUTImpl & time_zone) { if constexpr (precision_ == ResultPrecision::Extended) return time_zone.toRelativeQuarterNum(ExtendedDayNum(d)); else return static_cast(time_zone.toRelativeQuarterNum(ExtendedDayNum(d))); } static UInt16 execute(UInt16 d, const DateLUTImpl & time_zone) { return time_zone.toRelativeQuarterNum(DayNum(d)); } static constexpr bool hasPreimage() { return false; } using FactorTransform = ZeroTransform; }; template struct ToRelativeMonthNumImpl { static constexpr auto name = "toRelativeMonthNum"; static auto execute(Int64 t, const DateLUTImpl & time_zone) { if constexpr (precision_ == ResultPrecision::Extended) return time_zone.toRelativeMonthNum(t); else return static_cast(time_zone.toRelativeMonthNum(t)); } static UInt16 execute(UInt32 t, const DateLUTImpl & time_zone) { return time_zone.toRelativeMonthNum(static_cast(t)); } static auto execute(Int32 d, const DateLUTImpl & time_zone) { if constexpr (precision_ == ResultPrecision::Extended) return time_zone.toRelativeMonthNum(ExtendedDayNum(d)); else return static_cast(time_zone.toRelativeMonthNum(ExtendedDayNum(d))); } static UInt16 execute(UInt16 d, const DateLUTImpl & time_zone) { return time_zone.toRelativeMonthNum(DayNum(d)); } static constexpr bool hasPreimage() { return false; } using FactorTransform = ZeroTransform; }; template struct ToRelativeWeekNumImpl { static constexpr auto name = "toRelativeWeekNum"; static auto execute(Int64 t, const DateLUTImpl & time_zone) { if constexpr (precision_ == ResultPrecision::Extended) return time_zone.toRelativeWeekNum(t); else return static_cast(time_zone.toRelativeWeekNum(t)); } static UInt16 execute(UInt32 t, const DateLUTImpl & time_zone) { return time_zone.toRelativeWeekNum(static_cast(t)); } static auto execute(Int32 d, const DateLUTImpl & time_zone) { if constexpr (precision_ == ResultPrecision::Extended) return time_zone.toRelativeWeekNum(ExtendedDayNum(d)); else return static_cast(time_zone.toRelativeWeekNum(ExtendedDayNum(d))); } static UInt16 execute(UInt16 d, const DateLUTImpl & time_zone) { return time_zone.toRelativeWeekNum(DayNum(d)); } static constexpr bool hasPreimage() { return false; } using FactorTransform = ZeroTransform; }; template struct ToRelativeDayNumImpl { static constexpr auto name = "toRelativeDayNum"; static auto execute(Int64 t, const DateLUTImpl & time_zone) { if constexpr (precision_ == ResultPrecision::Extended) return static_cast(time_zone.toDayNum(t)); else return static_cast(time_zone.toDayNum(t)); } static UInt16 execute(UInt32 t, const DateLUTImpl & time_zone) { return time_zone.toDayNum(static_cast(t)); } static auto execute(Int32 d, const DateLUTImpl &) { if constexpr (precision_ == ResultPrecision::Extended) return static_cast(static_cast(d)); else return static_cast(static_cast(d)); } static UInt16 execute(UInt16 d, const DateLUTImpl &) { return static_cast(d); } static constexpr bool hasPreimage() { return false; } using FactorTransform = ZeroTransform; }; template struct ToRelativeHourNumImpl { static constexpr auto name = "toRelativeHourNum"; static auto execute(Int64 t, const DateLUTImpl & time_zone) { if constexpr (precision_ == ResultPrecision::Extended) return static_cast(time_zone.toStableRelativeHourNum(t)); else return static_cast(time_zone.toRelativeHourNum(t)); } static UInt32 execute(UInt32 t, const DateLUTImpl & time_zone) { if constexpr (precision_ == ResultPrecision::Extended) return static_cast(time_zone.toStableRelativeHourNum(static_cast(t))); else return static_cast(time_zone.toRelativeHourNum(static_cast(t))); } static auto execute(Int32 d, const DateLUTImpl & time_zone) { if constexpr (precision_ == ResultPrecision::Extended) return static_cast(time_zone.toStableRelativeHourNum(ExtendedDayNum(d))); else return static_cast(time_zone.toRelativeHourNum(ExtendedDayNum(d))); } static UInt32 execute(UInt16 d, const DateLUTImpl & time_zone) { if constexpr (precision_ == ResultPrecision::Extended) return static_cast(time_zone.toStableRelativeHourNum(DayNum(d))); else return static_cast(time_zone.toRelativeHourNum(DayNum(d))); } static constexpr bool hasPreimage() { return false; } using FactorTransform = ZeroTransform; }; template struct ToRelativeMinuteNumImpl { static constexpr auto name = "toRelativeMinuteNum"; static auto execute(Int64 t, const DateLUTImpl & time_zone) { if constexpr (precision_ == ResultPrecision::Extended) return static_cast(time_zone.toRelativeMinuteNum(t)); else return static_cast(time_zone.toRelativeMinuteNum(t)); } static UInt32 execute(UInt32 t, const DateLUTImpl & time_zone) { return static_cast(time_zone.toRelativeMinuteNum(static_cast(t))); } static auto execute(Int32 d, const DateLUTImpl & time_zone) { if constexpr (precision_ == ResultPrecision::Extended) return static_cast(time_zone.toRelativeMinuteNum(ExtendedDayNum(d))); else return static_cast(time_zone.toRelativeMinuteNum(ExtendedDayNum(d))); } static UInt32 execute(UInt16 d, const DateLUTImpl & time_zone) { return static_cast(time_zone.toRelativeMinuteNum(DayNum(d))); } static constexpr bool hasPreimage() { return false; } using FactorTransform = ZeroTransform; }; template struct ToRelativeSecondNumImpl { static constexpr auto name = "toRelativeSecondNum"; static Int64 execute(Int64 t, const DateLUTImpl &) { return t; } static UInt32 execute(UInt32 t, const DateLUTImpl &) { return t; } static auto execute(Int32 d, const DateLUTImpl & time_zone) { if constexpr (precision_ == ResultPrecision::Extended) return static_cast(time_zone.fromDayNum(ExtendedDayNum(d))); else return static_cast(time_zone.fromDayNum(ExtendedDayNum(d))); } static UInt32 execute(UInt16 d, const DateLUTImpl & time_zone) { return static_cast(time_zone.fromDayNum(DayNum(d))); } static constexpr bool hasPreimage() { return false; } using FactorTransform = ZeroTransform; }; template struct ToRelativeSubsecondNumImpl { static constexpr auto name = "toRelativeSubsecondNumImpl"; static Int64 execute(const DateTime64 & t, const DateTime64::NativeType scale, const DateLUTImpl &) { static_assert( scale_multiplier == millisecond_multiplier || scale_multiplier == microsecond_multiplier || scale_multiplier == nanosecond_multiplier); if (scale == scale_multiplier) return t.value; if (scale > scale_multiplier) return t.value / (scale / scale_multiplier); return common::mulIgnoreOverflow(t.value, scale_multiplier / scale); } static Int64 execute(UInt32 t, const DateLUTImpl &) { return common::mulIgnoreOverflow(static_cast(t), scale_multiplier); } static Int64 execute(Int32 d, const DateLUTImpl & time_zone) { return common::mulIgnoreOverflow(static_cast(time_zone.fromDayNum(ExtendedDayNum(d))), scale_multiplier); } static Int64 execute(UInt16 d, const DateLUTImpl & time_zone) { return common::mulIgnoreOverflow(static_cast(time_zone.fromDayNum(DayNum(d))), scale_multiplier); } using FactorTransform = ZeroTransform; }; struct ToYYYYMMImpl { static constexpr auto name = "toYYYYMM"; static UInt32 execute(Int64 t, const DateLUTImpl & time_zone) { return time_zone.toNumYYYYMM(t); } static UInt32 execute(UInt32 t, const DateLUTImpl & time_zone) { return time_zone.toNumYYYYMM(t); } static UInt32 execute(Int32 d, const DateLUTImpl & time_zone) { return time_zone.toNumYYYYMM(ExtendedDayNum(d)); } static UInt32 execute(UInt16 d, const DateLUTImpl & time_zone) { return time_zone.toNumYYYYMM(DayNum(d)); } static constexpr bool hasPreimage() { return true; } static OptionalFieldInterval getPreimage(const IDataType & type, const Field & point) { if (point.getType() != Field::Types::UInt64) return std::nullopt; auto year_month = point.safeGet(); auto year = year_month / 100; auto month = year_month % 100; if (year < DATE_LUT_MIN_YEAR || year > DATE_LUT_MAX_YEAR || month < 1 || month > 12 || (year == DATE_LUT_MAX_YEAR && month == 12)) return std::nullopt; const DateLUTImpl & date_lut = DateLUT::instance("UTC"); auto start_time = date_lut.makeDateTime(year, month, 1, 0, 0, 0); auto end_time = date_lut.addMonths(start_time, 1); if (isDateOrDate32(type) || isDateTime(type) || isDateTime64(type)) return {std::make_pair(Field(start_time), Field(end_time))}; throw Exception( ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT, "Illegal type {} of argument of function {}. Should be Date, Date32, DateTime or DateTime64", type.getName(), name); } using FactorTransform = ZeroTransform; }; struct ToYYYYMMDDImpl { static constexpr auto name = "toYYYYMMDD"; static UInt32 execute(Int64 t, const DateLUTImpl & time_zone) { return time_zone.toNumYYYYMMDD(t); } static UInt32 execute(UInt32 t, const DateLUTImpl & time_zone) { return time_zone.toNumYYYYMMDD(t); } static UInt32 execute(Int32 d, const DateLUTImpl & time_zone) { return time_zone.toNumYYYYMMDD(ExtendedDayNum(d)); } static UInt32 execute(UInt16 d, const DateLUTImpl & time_zone) { return time_zone.toNumYYYYMMDD(DayNum(d)); } static constexpr bool hasPreimage() { return false; } using FactorTransform = ZeroTransform; }; struct ToYYYYMMDDhhmmssImpl { static constexpr auto name = "toYYYYMMDDhhmmss"; static UInt64 execute(Int64 t, const DateLUTImpl & time_zone) { return time_zone.toNumYYYYMMDDhhmmss(t); } static UInt64 execute(UInt32 t, const DateLUTImpl & time_zone) { return time_zone.toNumYYYYMMDDhhmmss(t); } static UInt64 execute(Int32 d, const DateLUTImpl & time_zone) { return time_zone.toNumYYYYMMDDhhmmss(time_zone.toDate(ExtendedDayNum(d))); } static UInt64 execute(UInt16 d, const DateLUTImpl & time_zone) { return time_zone.toNumYYYYMMDDhhmmss(time_zone.toDate(DayNum(d))); } static constexpr bool hasPreimage() { return false; } using FactorTransform = ZeroTransform; }; struct DateTimeComponentsWithFractionalPart : public DateLUTImpl::DateTimeComponents { UInt16 millisecond; UInt16 microsecond; UInt16 nanosecond; }; struct ToDateTimeComponentsImpl { static constexpr auto name = "toDateTimeComponents"; static DateTimeComponentsWithFractionalPart execute(const DateTime64 & t, const DateTime64::NativeType scale_multiplier, const DateLUTImpl & time_zone) { auto components = DecimalUtils::splitWithScaleMultiplier(t, scale_multiplier); if (t.value < 0 && components.fractional) { components.fractional = scale_multiplier + (components.whole ? Int64(-1) : Int64(1)) * components.fractional; --components.whole; } // Normalize the dividers between microseconds and nanoseconds w.r.t. the scale. Int64 microsecond_divider = (millisecond_multiplier * scale_multiplier) / microsecond_multiplier; Int64 nanosecond_divider = scale_multiplier / microsecond_multiplier; // Protect against division by zero for smaller scale multipliers. microsecond_divider = (microsecond_divider ? microsecond_divider : 1); nanosecond_divider = (nanosecond_divider ? nanosecond_divider : 1); const Int64 & fractional = components.fractional; UInt16 millisecond = static_cast(fractional / microsecond_divider); UInt16 microsecond = static_cast((fractional % microsecond_divider) / nanosecond_divider); UInt16 nanosecond = static_cast(fractional % nanosecond_divider); return DateTimeComponentsWithFractionalPart{time_zone.toDateTimeComponents(components.whole), millisecond, microsecond, nanosecond}; } static DateTimeComponentsWithFractionalPart execute(UInt32 t, const DateLUTImpl & time_zone) { return DateTimeComponentsWithFractionalPart{time_zone.toDateTimeComponents(static_cast(t)), 0, 0, 0}; } static DateTimeComponentsWithFractionalPart execute(Int32 d, const DateLUTImpl & time_zone) { return DateTimeComponentsWithFractionalPart{time_zone.toDateTimeComponents(ExtendedDayNum(d)), 0, 0, 0}; } static DateTimeComponentsWithFractionalPart execute(UInt16 d, const DateLUTImpl & time_zone) { return DateTimeComponentsWithFractionalPart{time_zone.toDateTimeComponents(DayNum(d)), 0, 0, 0}; } using FactorTransform = ZeroTransform; }; struct DateTimeAccurateConvertStrategyAdditions {}; struct DateTimeAccurateOrNullConvertStrategyAdditions {}; template struct Transformer { template static void vector(const FromTypeVector & vec_from, ToTypeVector & vec_to, const DateLUTImpl & time_zone, const Transform & transform, [[maybe_unused]] ColumnUInt8::Container * vec_null_map_to, size_t input_rows_count) { using ValueType = typename ToTypeVector::value_type; vec_to.resize(input_rows_count); for (size_t i = 0; i < input_rows_count; ++i) { if constexpr (std::is_same_v || std::is_same_v) { if constexpr (std::is_same_v || std::is_same_v) { #pragma clang diagnostic push #pragma clang diagnostic ignored "-Wimplicit-const-int-float-conversion" bool is_valid_input = vec_from[i] >= 0 && vec_from[i] <= 0xFFFFFFFFL; #pragma clang diagnostic pop if (!is_valid_input) { if constexpr (std::is_same_v) { vec_to[i] = 0; (*vec_null_map_to)[i] = true; continue; } else { throw Exception(ErrorCodes::CANNOT_CONVERT_TYPE, "Value {} cannot be safely converted into type {}", vec_from[i], TypeName); } } } } if constexpr (is_extended_result) vec_to[i] = static_cast(transform.executeExtendedResult(vec_from[i], time_zone)); else vec_to[i] = static_cast(transform.execute(vec_from[i], time_zone)); } } }; template struct DateTimeTransformImpl { template static ColumnPtr execute( const ColumnsWithTypeAndName & arguments, const DataTypePtr & result_type, size_t input_rows_count, const Transform & transform = {}) { using Op = Transformer; const ColumnPtr source_col = arguments[0].column; if (const auto * sources = checkAndGetColumn(source_col.get())) { ColumnUInt8::MutablePtr col_null_map_to; ColumnUInt8::Container * vec_null_map_to [[maybe_unused]] = nullptr; if constexpr (std::is_same_v) { col_null_map_to = ColumnUInt8::create(sources->getData().size(), false); vec_null_map_to = &col_null_map_to->getData(); } auto mutable_result_col = result_type->createColumn(); auto * col_to = assert_cast(mutable_result_col.get()); WhichDataType result_data_type(result_type); if (result_data_type.isDateTime() || result_data_type.isDateTime64()) { const auto & time_zone = dynamic_cast(*result_type).getTimeZone(); Op::vector(sources->getData(), col_to->getData(), time_zone, transform, vec_null_map_to, input_rows_count); } else { size_t time_zone_argument_position = 1; if constexpr (std::is_same_v) time_zone_argument_position = 2; const DateLUTImpl & time_zone = extractTimeZoneFromFunctionArguments(arguments, time_zone_argument_position, 0); Op::vector(sources->getData(), col_to->getData(), time_zone, transform, vec_null_map_to, input_rows_count); } if constexpr (std::is_same_v) { if (vec_null_map_to) return ColumnNullable::create(std::move(mutable_result_col), std::move(col_null_map_to)); } return mutable_result_col; } throw Exception( ErrorCodes::ILLEGAL_COLUMN, "Illegal column {} of first argument of function {}", arguments[0].column->getName(), Transform::name); } }; }