#pragma once #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace DB { class Arena; using ArenaPtr = std::shared_ptr; using Arenas = std::vector; using ColumnsHashing::HashMethodContext; using ColumnsHashing::HashMethodContextPtr; using ColumnsHashing::LastElementCacheStats; class CompiledAggregateFunctionsHolder; class NativeWriter; struct OutputBlockColumns; struct GroupingSetsParams { GroupingSetsParams() = default; GroupingSetsParams(Names used_keys_, Names missing_keys_) : used_keys(std::move(used_keys_)), missing_keys(std::move(missing_keys_)) { } Names used_keys; Names missing_keys; }; using GroupingSetsParamsList = std::vector; /** How are "total" values calculated with WITH TOTALS? * (For more details, see TotalsHavingTransform.) * * In the absence of group_by_overflow_mode = 'any', the data is aggregated as usual, but the states of the aggregate functions are not finalized. * Later, the aggregate function states for all rows (passed through HAVING) are merged into one - this will be TOTALS. * * If there is group_by_overflow_mode = 'any', the data is aggregated as usual, except for the keys that did not fit in max_rows_to_group_by. * For these keys, the data is aggregated into one additional row - see below under the names `overflow_row`, `overflows`... * Later, the aggregate function states for all rows (passed through HAVING) are merged into one, * also overflow_row is added or not added (depending on the totals_mode setting) also - this will be TOTALS. */ /** Aggregates the source of the blocks. */ class Aggregator final { public: using AggregateColumns = std::vector; using AggregateColumnsData = std::vector; using AggregateColumnsConstData = std::vector; using AggregateFunctionsPlainPtrs = std::vector; struct Params { /// What to count. const Names keys; const AggregateDescriptions aggregates; const size_t keys_size; const size_t aggregates_size; /// The settings of approximate calculation of GROUP BY. const bool overflow_row; /// Do we need to put into AggregatedDataVariants::without_key aggregates for keys that are not in max_rows_to_group_by. const size_t max_rows_to_group_by; const OverflowMode group_by_overflow_mode; /// Two-level aggregation settings (used for a large number of keys). /** With how many keys or the size of the aggregation state in bytes, * two-level aggregation begins to be used. Enough to reach of at least one of the thresholds. * 0 - the corresponding threshold is not specified. */ size_t group_by_two_level_threshold; size_t group_by_two_level_threshold_bytes; /// Settings to flush temporary data to the filesystem (external aggregation). const size_t max_bytes_before_external_group_by; /// 0 - do not use external aggregation. /// Return empty result when aggregating without keys on empty set. bool empty_result_for_aggregation_by_empty_set; TemporaryDataOnDiskScopePtr tmp_data_scope; /// Settings is used to determine cache size. No threads are created. size_t max_threads; const size_t min_free_disk_space; bool compile_aggregate_expressions; size_t min_count_to_compile_aggregate_expression; size_t max_block_size; bool only_merge; bool enable_prefetch; bool optimize_group_by_constant_keys; const double min_hit_rate_to_use_consecutive_keys_optimization; StatsCollectingParams stats_collecting_params; Params( const Names & keys_, const AggregateDescriptions & aggregates_, bool overflow_row_, size_t max_rows_to_group_by_, OverflowMode group_by_overflow_mode_, size_t group_by_two_level_threshold_, size_t group_by_two_level_threshold_bytes_, size_t max_bytes_before_external_group_by_, bool empty_result_for_aggregation_by_empty_set_, TemporaryDataOnDiskScopePtr tmp_data_scope_, size_t max_threads_, size_t min_free_disk_space_, bool compile_aggregate_expressions_, size_t min_count_to_compile_aggregate_expression_, size_t max_block_size_, bool enable_prefetch_, bool only_merge_, // true for projections bool optimize_group_by_constant_keys_, double min_hit_rate_to_use_consecutive_keys_optimization_, const StatsCollectingParams & stats_collecting_params_) : keys(keys_) , aggregates(aggregates_) , keys_size(keys.size()) , aggregates_size(aggregates.size()) , overflow_row(overflow_row_) , max_rows_to_group_by(max_rows_to_group_by_) , group_by_overflow_mode(group_by_overflow_mode_) , group_by_two_level_threshold(group_by_two_level_threshold_) , group_by_two_level_threshold_bytes(group_by_two_level_threshold_bytes_) , max_bytes_before_external_group_by(max_bytes_before_external_group_by_) , empty_result_for_aggregation_by_empty_set(empty_result_for_aggregation_by_empty_set_) , tmp_data_scope(std::move(tmp_data_scope_)) , max_threads(max_threads_) , min_free_disk_space(min_free_disk_space_) , compile_aggregate_expressions(compile_aggregate_expressions_) , min_count_to_compile_aggregate_expression(min_count_to_compile_aggregate_expression_) , max_block_size(max_block_size_) , only_merge(only_merge_) , enable_prefetch(enable_prefetch_) , optimize_group_by_constant_keys(optimize_group_by_constant_keys_) , min_hit_rate_to_use_consecutive_keys_optimization(min_hit_rate_to_use_consecutive_keys_optimization_) , stats_collecting_params(stats_collecting_params_) { } /// Only parameters that matter during merge. Params(const Names & keys_, const AggregateDescriptions & aggregates_, bool overflow_row_, size_t max_threads_, size_t max_block_size_, double min_hit_rate_to_use_consecutive_keys_optimization_) : Params( keys_, aggregates_, overflow_row_, 0, OverflowMode::THROW, 0, 0, 0, false, nullptr, max_threads_, 0, false, 0, max_block_size_, false, true, false, min_hit_rate_to_use_consecutive_keys_optimization_, {}) { } static Block getHeader(const Block & header, bool only_merge, const Names & keys, const AggregateDescriptions & aggregates, bool final); Block getHeader(const Block & header_, bool final) const { return getHeader(header_, only_merge, keys, aggregates, final); } /// Remember the columns we will work with ColumnRawPtrs makeRawKeyColumns(const Block & block) const; AggregateColumnsConstData makeAggregateColumnsData(const Block & block) const; /// Returns keys and aggregated for EXPLAIN query void explain(WriteBuffer & out, size_t indent) const; void explain(JSONBuilder::JSONMap & map) const; }; explicit Aggregator(const Block & header_, const Params & params_); /// Process one block. Return false if the processing should be aborted (with group_by_overflow_mode = 'break'). bool executeOnBlock(const Block & block, AggregatedDataVariants & result, ColumnRawPtrs & key_columns, AggregateColumns & aggregate_columns, /// Passed to not create them anew for each block bool & no_more_keys) const; bool executeOnBlock(Columns columns, size_t row_begin, size_t row_end, AggregatedDataVariants & result, ColumnRawPtrs & key_columns, AggregateColumns & aggregate_columns, /// Passed to not create them anew for each block bool & no_more_keys) const; /** This array serves two purposes. * * Function arguments are collected side by side, and they do not need to be collected from different places. Also the array is made zero-terminated. * The inner loop (for the case without_key) is almost twice as compact; performance gain of about 30%. */ struct AggregateFunctionInstruction { const IAggregateFunction * that{}; size_t state_offset{}; const IColumn ** arguments{}; const IAggregateFunction * batch_that{}; const IColumn ** batch_arguments{}; const UInt64 * offsets{}; bool has_sparse_arguments = false; bool can_optimize_equal_keys_ranges = true; }; /// Used for optimize_aggregation_in_order: /// - No two-level aggregation /// - No external aggregation /// - No without_key support (it is implemented using executeOnIntervalWithoutKey()) void executeOnBlockSmall( AggregatedDataVariants & result, size_t row_begin, size_t row_end, ColumnRawPtrs & key_columns, AggregateFunctionInstruction * aggregate_instructions) const; void executeOnIntervalWithoutKey( AggregatedDataVariants & data_variants, size_t row_begin, size_t row_end, AggregateFunctionInstruction * aggregate_instructions) const; /// Used for aggregate projection. bool mergeOnBlock(Block block, AggregatedDataVariants & result, bool & no_more_keys, std::atomic & is_cancelled) const; void mergeOnBlockSmall( AggregatedDataVariants & result, size_t row_begin, size_t row_end, const AggregateColumnsConstData & aggregate_columns_data, const ColumnRawPtrs & key_columns) const; void mergeOnIntervalWithoutKey( AggregatedDataVariants & data_variants, size_t row_begin, size_t row_end, const AggregateColumnsConstData & aggregate_columns_data, std::atomic & is_cancelled) const; /** Convert the aggregation data structure into a block. * If overflow_row = true, then aggregates for rows that are not included in max_rows_to_group_by are put in the first block. * * If final = false, then ColumnAggregateFunction is created as the aggregation columns with the state of the calculations, * which can then be combined with other states (for distributed query processing). * If final = true, then columns with ready values are created as aggregate columns. */ BlocksList convertToBlocks(AggregatedDataVariants & data_variants, bool final, size_t max_threads) const; ManyAggregatedDataVariants prepareVariantsToMerge(ManyAggregatedDataVariants && data_variants) const; using BucketToBlocks = std::map; /// Merge partially aggregated blocks separated to buckets into one data structure. void mergeBlocks(BucketToBlocks bucket_to_blocks, AggregatedDataVariants & result, size_t max_threads, std::atomic & is_cancelled); /// Merge several partially aggregated blocks into one. /// Precondition: for all blocks block.info.is_overflows flag must be the same. /// (either all blocks are from overflow data or none blocks are). /// The resulting block has the same value of is_overflows flag. Block mergeBlocks(BlocksList & blocks, bool final, std::atomic & is_cancelled); /** Split block with partially-aggregated data to many blocks, as if two-level method of aggregation was used. * This is needed to simplify merging of that data with other results, that are already two-level. */ std::vector convertBlockToTwoLevel(const Block & block) const; /// For external aggregation. void writeToTemporaryFile(AggregatedDataVariants & data_variants, size_t max_temp_file_size = 0) const; bool hasTemporaryData() const { return tmp_data && !tmp_data->empty(); } const TemporaryDataOnDisk & getTemporaryData() const { return *tmp_data; } /// Get data structure of the result. Block getHeader(bool final) const; private: friend struct AggregatedDataVariants; friend class ConvertingAggregatedToChunksTransform; friend class ConvertingAggregatedToChunksSource; friend class ConvertingAggregatedToChunksWithMergingSource; friend class AggregatingInOrderTransform; /// Data structure of source blocks. Block header; /// Positions of aggregation key columns in the header. const ColumnNumbers keys_positions; Params params; AggregatedDataVariants::Type method_chosen; Sizes key_sizes; HashMethodContextPtr aggregation_state_cache; AggregateFunctionsPlainPtrs aggregate_functions; using AggregateFunctionInstructions = std::vector; using NestedColumnsHolder = std::vector>; Sizes offsets_of_aggregate_states; /// The offset to the n-th aggregate function in a row of aggregate functions. size_t total_size_of_aggregate_states = 0; /// The total size of the row from the aggregate functions. // add info to track alignment requirement // If there are states whose alignment are v1, ..vn, align_aggregate_states will be max(v1, ... vn) size_t align_aggregate_states = 1; bool all_aggregates_has_trivial_destructor = false; /// How many RAM were used to process the query before processing the first block. Int64 memory_usage_before_aggregation = 0; LoggerPtr log = getLogger("Aggregator"); /// For external aggregation. TemporaryDataOnDiskPtr tmp_data; size_t min_bytes_for_prefetch = 0; #if USE_EMBEDDED_COMPILER std::shared_ptr compiled_aggregate_functions_holder; #endif std::vector is_aggregate_function_compiled; /** Try to compile aggregate functions. */ void compileAggregateFunctionsIfNeeded(); /** Select the aggregation method based on the number and types of keys. */ AggregatedDataVariants::Type chooseAggregationMethod(); /** Create states of aggregate functions for one key. */ template void createAggregateStates(AggregateDataPtr & aggregate_data) const; /** Call `destroy` methods for states of aggregate functions. * Used in the exception handler for aggregation, since RAII in this case is not applicable. */ void destroyAllAggregateStates(AggregatedDataVariants & result) const; void executeImpl( AggregatedDataVariants & result, size_t row_begin, size_t row_end, ColumnRawPtrs & key_columns, AggregateFunctionInstruction * aggregate_instructions, bool no_more_keys = false, bool all_keys_are_const = false, AggregateDataPtr overflow_row = nullptr) const; /// Process one data block, aggregate the data into a hash table. template void executeImpl( Method & method, Arena * aggregates_pool, size_t row_begin, size_t row_end, ColumnRawPtrs & key_columns, AggregateFunctionInstruction * aggregate_instructions, LastElementCacheStats & consecutive_keys_cache_stats, bool no_more_keys, bool all_keys_are_const, AggregateDataPtr overflow_row) const; template void executeImpl( Method & method, State & state, Arena * aggregates_pool, size_t row_begin, size_t row_end, AggregateFunctionInstruction * aggregate_instructions, bool no_more_keys, bool all_keys_are_const, AggregateDataPtr overflow_row) const; /// Specialization for a particular value no_more_keys. template void executeImplBatch( Method & method, State & state, Arena * aggregates_pool, size_t row_begin, size_t row_end, AggregateFunctionInstruction * aggregate_instructions, bool no_more_keys, bool all_keys_are_const, bool use_compiled_functions, AggregateDataPtr overflow_row) const; void executeAggregateInstructions( Arena * aggregates_pool, size_t row_begin, size_t row_end, AggregateFunctionInstruction * aggregate_instructions, const std::unique_ptr & places, size_t key_start, bool has_only_one_value_since_last_reset, bool all_keys_are_const, bool use_compiled_functions) const; /// For case when there are no keys (all aggregate into one row). void executeWithoutKeyImpl( AggregatedDataWithoutKey & res, size_t row_begin, size_t row_end, AggregateFunctionInstruction * aggregate_instructions, Arena * arena, bool use_compiled_functions) const; template void writeToTemporaryFileImpl( AggregatedDataVariants & data_variants, Method & method, TemporaryFileStream & out) const; /// Merge NULL key data from hash table `src` into `dst`. template void mergeDataNullKey( Table & table_dst, Table & table_src, Arena * arena) const; /// Merge data from hash table `src` into `dst`. template void mergeDataImpl(Table & table_dst, Table & table_src, Arena * arena, bool use_compiled_functions, bool prefetch, ThreadPool & thread_pool, std::atomic & is_cancelled) const; /// Merge data from hash table `src` into `dst`, but only for keys that already exist in dst. In other cases, merge the data into `overflows`. template void mergeDataNoMoreKeysImpl( Table & table_dst, AggregatedDataWithoutKey & overflows, Table & table_src, Arena * arena) const; /// Same, but ignores the rest of the keys. template void mergeDataOnlyExistingKeysImpl( Table & table_dst, Table & table_src, Arena * arena) const; void mergeWithoutKeyDataImpl( ManyAggregatedDataVariants & non_empty_data, std::atomic & is_cancelled) const; template void mergeSingleLevelDataImpl( ManyAggregatedDataVariants & non_empty_data, std::atomic & is_cancelled) const; template using ConvertToBlockRes = std::conditional_t; using ConvertToBlockResVariant = std::variant; template ConvertToBlockResVariant convertToBlockImpl(Method & method, Table & data, Arena * arena, Arenas & aggregates_pools, bool final, size_t rows, bool return_single_block) const; template void insertAggregatesIntoColumns( Mapped & mapped, MutableColumns & final_aggregate_columns, Arena * arena) const; Block insertResultsIntoColumns( PaddedPODArray & places, OutputBlockColumns && out_cols, Arena * arena, bool has_null_key_data, bool use_compiled_functions) const; template ConvertToBlockResVariant convertToBlockImplFinal( Method & method, Table & data, Arena * arena, Arenas & aggregates_pools, bool use_compiled_functions, bool return_single_block) const; template ConvertToBlockResVariant convertToBlockImplNotFinal(Method & method, Table & data, Arenas & aggregates_pools, size_t rows, bool return_single_block) const; template Block convertOneBucketToBlock( AggregatedDataVariants & data_variants, Method & method, Arena * arena, bool final, Int32 bucket) const; Block convertOneBucketToBlock(AggregatedDataVariants & variants, Arena * arena, bool final, Int32 bucket) const; Block mergeAndConvertOneBucketToBlock( ManyAggregatedDataVariants & variants, Arena * arena, bool final, Int32 bucket, std::atomic & is_cancelled) const; Block prepareBlockAndFillWithoutKey(AggregatedDataVariants & data_variants, bool final, bool is_overflows) const; BlocksList prepareBlocksAndFillTwoLevel(AggregatedDataVariants & data_variants, bool final, ThreadPool * thread_pool) const; template ConvertToBlockRes prepareBlockAndFillSingleLevel(AggregatedDataVariants & data_variants, bool final) const; template BlocksList prepareBlocksAndFillTwoLevelImpl( AggregatedDataVariants & data_variants, Method & method, bool final, ThreadPool * thread_pool) const; template void mergeStreamsImplCase( Arena * aggregates_pool, State & state, Table & data, bool no_more_keys, AggregateDataPtr overflow_row, size_t row_begin, size_t row_end, const AggregateColumnsConstData & aggregate_columns_data, Arena * arena_for_keys) const; /// `arena_for_keys` used to store serialized aggregation keys (in methods like `serialized`) to save some space. /// If not provided, aggregates_pool is used instead. Refer to mergeBlocks() for an usage example. template void mergeStreamsImpl( Block block, Arena * aggregates_pool, Method & method, Table & data, AggregateDataPtr overflow_row, LastElementCacheStats & consecutive_keys_cache_stats, bool no_more_keys, Arena * arena_for_keys = nullptr) const; template void mergeStreamsImpl( Arena * aggregates_pool, Method & method, Table & data, AggregateDataPtr overflow_row, LastElementCacheStats & consecutive_keys_cache_stats, bool no_more_keys, size_t row_begin, size_t row_end, const AggregateColumnsConstData & aggregate_columns_data, const ColumnRawPtrs & key_columns, Arena * arena_for_keys) const; void mergeBlockWithoutKeyStreamsImpl( Block block, AggregatedDataVariants & result, std::atomic & is_cancelled) const; void mergeWithoutKeyStreamsImpl( AggregatedDataVariants & result, size_t row_begin, size_t row_end, const AggregateColumnsConstData & aggregate_columns_data, std::atomic & is_cancelled) const; template void mergeBucketImpl( ManyAggregatedDataVariants & data, Int32 bucket, Arena * arena, std::atomic & is_cancelled) const; template void convertBlockToTwoLevelImpl( Method & method, Arena * pool, ColumnRawPtrs & key_columns, const Block & source, std::vector & destinations) const; template void destroyImpl(Table & table) const; void destroyWithoutKey( AggregatedDataVariants & result) const; /** Checks constraints on the maximum number of keys for aggregation. * If it is exceeded, then, depending on the group_by_overflow_mode, either * - throws an exception; * - returns false, which means that execution must be aborted; * - sets the variable no_more_keys to true. */ bool checkLimits(size_t result_size, bool & no_more_keys) const; void prepareAggregateInstructions( Columns columns, AggregateColumns & aggregate_columns, Columns & materialized_columns, AggregateFunctionInstructions & instructions, NestedColumnsHolder & nested_columns_holder) const; void addSingleKeyToAggregateColumns( AggregatedDataVariants & data_variants, MutableColumns & aggregate_columns) const; void addArenasToAggregateColumns( const AggregatedDataVariants & data_variants, MutableColumns & aggregate_columns) const; void createStatesAndFillKeyColumnsWithSingleKey( AggregatedDataVariants & data_variants, Columns & key_columns, size_t key_row, MutableColumns & final_key_columns) const; static bool hasSparseArguments(AggregateFunctionInstruction * aggregate_instructions); static void addBatch( size_t row_begin, size_t row_end, AggregateFunctionInstruction * inst, AggregateDataPtr * places, Arena * arena); static void addBatchSinglePlace( size_t row_begin, size_t row_end, AggregateFunctionInstruction * inst, AggregateDataPtr place, Arena * arena); }; UInt64 calculateCacheKey(const DB::ASTPtr & select_query); /** Get the aggregation variant by its type. */ template Method & getDataVariant(AggregatedDataVariants & variants); #define M(NAME, IS_TWO_LEVEL) \ template <> inline decltype(AggregatedDataVariants::NAME)::element_type & getDataVariant(AggregatedDataVariants & variants) { return *variants.NAME; } /// NOLINT APPLY_FOR_AGGREGATED_VARIANTS(M) #undef M }